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SUMMARY

Kittiwake chick production was measured at 8 study plots in 4 Shetland colonies. While the 1.11 young
fledged per incubating pair at Troswick Ness was comparable to that reported from other British colonies,
production at the other 3 colonies (0-35 at Noss, 0.64 at Sumburgh Head and 0.70 at Eshaness) was
considerably lower. Single visits prior to fledging were made to four other colonies and counts of chicks
emphasised the variability in production between colonies. A mean brood size of 1.40 was recorded on
these single visits. compared to 1.10 at the same colonies in 1985. In the Noss study plot, predation of
Kittiwake chicks by Great Skuas was thought to be largely responsible for the fow production. The

consequences for a monitoring strategy of the variation in chick production within and between colonies
are discussed.
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A comparative study of the Ischnoceran _
MallopF:laga of Wilson’s Petrel Oceanites
oceanicus and British Storm Petrel
Hydrobates pelagicus

J.A. Fowler and R.A. Price
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that two species co-exist at all suggests a degree of niche differentiation, and Fowler & Miller
(1984) speculate on the basis of samples collected in July that the apparently asynchronous
life cycles of the two species infesting the Storm Petrel could contribute to such differentia-
tion; they suggest that the dynamics of the community could be further investigated by
sampling at another time of year. Samples obtained in August and September are described
in this paper.

Unlike the Storm Petrel, Wilson’s Petrel Oceanites oceanicus is host to only one species of
elongate mallophaga, namely Philoceanus robertsi. The fact that this is the same species as
the “subordinate” one on the Storm Petrel offers the opportunity to investigate the frequency
distribution and population structure in the absence of the “dominant” Halipeurus pelagicus.
Furthermore, because samples of the louse can be obtained from Wilson’s Petrels during the
southern summer, the population structure may be described from this host at a time of year
that is impossible for Storm Petrels because they are at sea during the northemn winter.

METHODS

Samples of Storm Petrels were captured in mist nets by attraction to tape-lures (Fowler et al.
1982) in Shetland, Scotland, on three dates in August and September 1986 for comparison
with samples previously obtained in July and described by Fowler et al. (1984). Wilson’s
Petrels were captured in mist nets at Bernsten Point, Signy Island, South Orkney (60° 42'S,
45° 35" W) on six dates between 10 January and 6 March 1985 and on three dates between 13
February and 19 March 1986. Birds were deloused in glass vessels saturated with chloroform
vapour, exactly as described by Fowler & Cohen (1983). The ectoparasites thus removed
were identified and preserved in 70% ethanol.

Specimens of Philoceanus robertsi and Halipeurus pelagicus were readily sorted, using a
%10 binocular microscope, into 5 distinct size categories. Head widths of a sample of each
size class were measured using a calibrated microscope eye-piece graticule and Dyar’s law
(Teissier 1936) was applied to confirm that each size class corresponded, in increasing size,
to first, second and third instar nymphs, adult male and adult female population classes.

RESULTS
Wilson’s Petrel

Sixty-one Wilson's Petrels were deloused in 1985, yielding 404 Mallophaga. All but 10 of
these were Philoceanus robertsi, of which the mean (£) was 6.5 per bird, the variance (s%) 29.5
and the median 4.8. The corresponding values for the smaller sample of 41 birds obtained in
1986 are 6.9, 43.6 and 4.6. The differences between the three pairs of statistics are not
statistically significantly different (z=0.30; Fy 4=1.48; Mann-Whitney U-test; respec-
tively). The mean infestation over the six sampling dates in 1985 showed no trend (r,=0.314)
and all samples are therefore pooled for the purpose of constructing a frequency distribution
of this species.

The remaining Mallophaga comprised Austromenopon sp. and Saemundssonia sp. but it is
not at present possible to'identify them specifically because insufficient specimens of each sex
were obtained.

The frequency distribution of Philoceanus robertsi on Wilson’s Petrels is shown in Figure
1. The distribution is clearly an aggregated (contagious) type. An exponent, k, estimated
from k=x2/ (s’-%), is 1.56, and may be used to calculate the expected frequencies for a
negative binomial distribution based on the sample mean and variance. The expected
frequencies are shown in Figure 1, and are in close agreement with the observed frequencies
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Figure 2. Population structures of elongate Mallophaga species on Wilson's Petrels and Storm Petrels
A: Philoceanus robertsi on Wilson's Petrels, January — March; B: Halipeurus pelagicus on Storm Pctrels‘
July - September. Each “tier” in the structures represents, in ascending order, 1st, 2nd, 3rd instax"
nymphs, adults. Numbers within the structures are the numbers of lice obtained. T '

years are not quite in phase. However, the structure is statistically indistinguishabie from the
February 1985 sub-sample (X,*=2.72) and confirms the trend of a higher proportion of
adults later in the season.

Storm Petrel

Sixty Storm Petrels were deloused and the sample of Halipeurus pelagicus obtained was
divided into two sub-samples corresponding to August and September. The structures of
these are shown in Figure 2B and are compared with the July samples described by Fowler et
al. (1984). The difference between the three structures is statistically highly significant
(Xs*=27.9) and is due to a progressive increase in the proportion of adults in the population
over the sampling period;in September first instar nymphs account for only 4% of the sample.
The results (including data presented by Fowler & Miller 1984) are summarised in Table 1.

DISCUSSION

The ‘most conspicuous difference between the ectoparasite complement of the two host
species is that the Storm Petrel has two species of elongate Mallophaga whilst Wilson’s Petrel
has only one. The interesting feature is that the louse species Philoceanus robertsi found on
the Wilson’s Petrel is present also on the Storm Petrel, but is subordinate to its second louse
species, Halipeurus pelagicus (in this discussion the terms “dominant” and “subordinate” are
used to indicate relative numbers only).
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TABLE L. SUMMARY OF POPULATION CHARACTERISTICS OF THE ELONGATE MOLLOPHAGA OF
STORM PETRELS. DATA FOR HALIPEURUS PELAGICUS IN JULY DESCRIBED BY FOWLER & MILLER
(1984) ARE INCLUDED

Mallophaga species

Halipeurus pelagicus Philoceanus robertst
Source Shetland, July-September Shetland, July-September
Meanlice per bird 5.75 0.15
Variance s 13.48 0.18
Storm Frequency distribution Negative binomial, Probably Poisson
Petrel k=4.27
Population structure High reproductive rate “Aged” with 14.3%

with 66% nymphs in July, nymphs in July
decliningto 45.7%
nymphs in September

Source Signy Isle, Antarctica
January-March

Mean lice per bird 6.6
Wilson's | Variance, 5> (NOT 34.8
Petrel Frequency distribution PRESENT) Negative binomial,

k=1.56

Actively reproducing with
60% nymphs in January,
declining to 34.4% in March

Population structure

The close agreement of the frequency distribution of P. robertsion the Wilson’s Petrel with
that of a negative binomial is not unexpected. Reasons why ectoparasites should be
contagiously distributed among their hosts have been discussed and reviewed by Crofton
(1971), Randolph (1975) and Fowler & Williams (1985), and inctude such factors as seasonal
variation in infestation rates; non-random spatial distribution of hosts in the habitat;
resistance to re-infestation by previously infested hosts; and non-random differences in
behaviour or physiology (e.g. moult) related to different age classes within the host
population. Why the frequency distributions should conform mathematically so well with a
negative binomial model, rather than some other model of contagiousness, is not clear, but
Anderson & May (1978) postulate that the value of the binomial exponent, k, is a measure
of the destabilising effect of the parasite on the host population, and is related to the relative
reproductive rates of the parasite and host.

The frequency distribution is similar to that of Halipeurus pelagicus on the Storm Petrel,
but the latter has a more symmetrical distribution with 2 mode of 3-4 lice which is reflected
in the higher value of k (as k increases, so too does the degree of symmetry of the distribution
until eventually the distribution conforms to Poisson). It is not possibie to further discuss the
biological significance of these sample statistics until more is known about the life histories
of the lice, possibly from in vitro studies.
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Although the mean infestation of Wilson’s Petrels by P. robertsi did not change during the
sampling period, the population structure of the louse altered markedly. The structures
illustrated in Figure 1A show a progressive decrease in the proportion of nymphs in the
population. The proportion of nymphs peaks when a population is in a vigorously reproduc-
ing phase (Marshall 1981). When reproductive rates decline, so does the proportion of
nymphs as their more ephemeral stages moult into the longer-lived adults. Crude extrapola-
tion of the observed trend suggests that by June the louse population structure would consist
of about 80% adults ~ similar to the population structure of this species which is found on
Storm Petrels in July (Fowler & Miller 1984). It seems likely that the reproductive rate
reaches a minimum at about this time, before recovering through the latter part of the
calendar year until the cycle is complete and the population structure observed in January is
restored. The population structure of P. robertsi on Wilson's Petrels in January and February
is statistically identical to that of Halipeurus pelagicus on Storm Petrels in July, and, as Figure
2B shows, the populations of both louse species undergo a parallel ageing process towards
the end of their host’s breeding season.

Until such time as large samples of both petrel species can be obtained from their
respective wintering grounds for delousing, the complete annual cycles of the mallophagan
populations cannot be elucidated with certainty. However, the evidence presented in this
paper, when viewed with that of Fowler & Miller (1984), suggests that, on the Storm Petrel,
the life cycles of the two louse species are out of phase with each other, possibly the outcome
of an adaptive strategy which reduces competition. The observations can further be
accounted for within the concepts of “fundamental niche” and “realised niche” described by
a number of authors (e.g. Krebs 1985), in which the definition of “niche” includes a
multiplicity of biological factors, including density and breeding strategy.

Either of two scenarios seem possible; in both the fundamental niches of Philoceanus and
Halipeurus are taken to be similar to those now occupied on the Wilson’s Petrel and Storm
Petrel, respectively:

(a) Philoceanus is an ancient taxon which infested an extinct precursor of both Oceanites and
Hydrobates. As the petrel species diverged, Philoceanus remained on both and retained
a synchronous life cycle on both hosts, even though the hosts’ breeding season became
asynchronous. Halipeurus emerged later and became successful on Hydrobates. Compet-
ing with Halipeurus, Philoceanus assumed a realised niche of greatly reduced density.
Bearing in mind Hardin’s (1960) axiom “complete competitors cannot coexist”,
Philoceanus maintains a stable, but sub-ordinate, population on Hydrobates by virtue of
a life cycle which is asynchronous with Halipeurus.

Or,

(b) Philoceanus and Halipeurus evolved separately on Oceanites and Hydrobates.
Philoceanus then became established on Hydrobates through a secondary infestation
brought about by chance encounter of the two petrel species (Fowler & Miller (1984),
consider how this might arise). Unable to occupy its fundamental niche on the new host
in the presence of Halipeurus, Philoceanus occupies a subordinate realised niche by
retaining breeding synchrony with the population on its original host.

Detailed investigations of the phylogenetic relationships between the two hosts and those
of their lice, supported by comparative studies of other petrels, may eventually suggest which
of the alternative scenarios is the more likely.
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SUMMARY

The frequency distribution of an elongate feather louse Philoceanus robertsi found on the Wilson's Petrel
Oceanites oceanicus conforms well with a negative binomial model. Its infestation density and frequency
distribution are similar to those previously described for another elongate louse Halipeurus pelagicus
found on the Storm Petrel Hydrobates pelagicus. An analysis of the population structures of the lice
reveals that both species have highest reproductive rates during the breeding season of the host, but both
structures became dominated by aduits, suggesting an ageing and declining process, towards the end of
the hosts” breeding season. Philoceanus robertsi is also found on the Storm Petrel, but at a much lower
density. Its reproductive cycle on this host appears to be in synchrony with that of the population on
Wilson's Petrels. Explanations in terms of niche differentiation are offered.
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