PARASITES OF SOUTH AFRICAN WILDLIFE. VIII. HELMINTH AND ARTHROPOD PARASITES OF WARTHOGS, *PHACOCHOERUS AETHIOPICUS*, IN THE EASTERN TRANSVAAL J. BOOMKER⁽¹⁾, I. G. HORAK⁽²⁾, D. G. BOOYSE⁽¹⁾ and SANTA MEYER⁽²⁾ #### ABSTRACT BOOMKER, J., HORAK, I. G., BOOYSE, D. G. & MEYER, SANTA, 1991. Parasites of South African wildlife. VIII. Helminth and arthropod parasites of warthogs, *Phacochoerus aethiopicus*, in the eastern Transvaal. *Onderstepoort Journal of Veterinary Research*, 58, 195–202 (1991) Helminth and arthropod parasites were collected from 41 warthogs, *Phacochoerus aethiopicus*, in the Hoedspruit Nature Reserve, eastern Transvaal. This reserve consists of a military base, which is a restricted area and is surrounded by a reserve, which is open to the public. Eleven nematode species, 1 or 2 cestode species and the larvae of 2 cestode species were recovered from the animals in the reserve, and 8 nematode species and 1 or 2 cestode species were recovered from those in the military base. Oesophagostomum spp. were generally most abundant in warthogs in the reserve during the cooler months of the year, while Probstmayria vivipara also occurred in peak numbers during the cooler months, with an additional peak in October and November 1988 in warthogs in the reserve and the base, respectively. No pattern of seasonal abundance could be determined for the other helminth species. The warthogs also harboured 8 ixodid and 1 argasid tick species, 3 flea species and 1 louse species. Adult and immature *Haematopinus phacochoeri* were most numerous during August and September, and the largest numbers of adult *Rhipicephalus simus* were present from December to April. ### INTRODUCTION The seasonal abundance of endo- and ectoparasites of warthogs, *Phacochoerus aethiopicus*, in northern Namibia and in the Kruger National Park (KNP) in the eastern Transvaal have recently been reported (Horak, Biggs, Hanssen & Hanssen, 1983; Horak, Boomker, De Vos & Potgieter, 1988). The warthogs from Namibia were infested with 9 nematode species, 1 or 2 cestode species, 6 ixodid tick species and the larvae of a calliphorid fly. Those from the KNP harboured 13 nematode species, 1 trematode species, 1 or 2 cestode species, the larval stages of 4 cestode species, 7 ixodid tick species, 1 species of argasid, 3 flea species, 1 louse species and the nymphs of a pentastomid. This paper describes a similar survey conducted on warthogs in the Hoedspruit Nature Reserve which is also situated in the eastern Transvaal Lowveld # **MATERIALS AND METHODS** ## Survey area The warthogs were all shot in the Hoedspruit Nature Reserve (HNR) which is situated in a vegetation zone classified as Lowveld (Acocks, 1988). The temperature is warm to hot in summer and mild in winter, and frost does not occur. The HNR is owned by the South African Defence Force and comprises approximately 4 000 ha. It consists of an inner area of about 2 000 ha, the restricted military base, around which lies another 2 000 ha, the reserve, which is open to the public. The base is separated from the reserve by a series of security fences, thus making it impossible for warthogs on either side to pass through. The outer fence of the reserve, however, is of such a nature that warthogs from the surrounding privately owned game farms can pass through with ease. # Climatological data The mean monthly maximum and minimum atmospheric tempatures as well as the total monthly rainfall were recorded during the survey period. ## Received 23 May 1991 - Editor ## Survey animals With the exception of March 1989, when none could be located, warthogs were shot each month for 12 consecutive months from August 1988 to July 1989. Although often unsuccessful, an attempt was made at each occasion to collect the same number of warthogs of the same ages and sexes from the reserve and the base. A total of 41 warthogs was shot, of which 5 adult males, 11 adult females, 5 subadult males, 2 subadult females and 4 juvenile females were shot in the reserve and 1 adult male, 4 adult females, 2 subadult males, 2 subadult females, 1 juvenile male and 3 juvenile females were shot on the base. ## Parasite recovery The carcasses were transported to a field laboratory where they were eviscerated and macroscopically visible parasites removed and preserved in 70 % alcohol. The carcasses were skinned and eviscerated, and the gastro-intestinal tracts were divided into the stomachs, the small intestines and the large intestines, and placed in shallow, flat-bottomed plastic trays. The stomachs were cut open and the ingesta carefully removed so as not to disturb the underlying mucosa. The ingesta were discarded, but the stomach was thoroughly washed in normal saline and the volume of the resulting suspension measured. The small and the large intestines were opened separately with bowel scissors and washed in saline. The washings were added to the respective ingesta. The volumes of the ingesta were measured and poured into separate plastic buckets. A 1th aliquot by volume was made of the ingesta of each of the small intestines and a th aliquot of the ingesta of each of the large intestines. The worms in the various aliquots as well as those in the various stomach contents were killed by adding an equal volume of boiling saline to each. The suspensions were then individually washed over a sieve with apertures of 0,15 mm and the residues preserved in separate bottles in 10 % formalin. Digests of the gastro-intestinal mucosae were not done. The hearts, lungs and livers of the first 16 animals were processed for helminth recovery as described by Boomker, Horak & De Vos (1989) and examined. When no parasites were found, these organs were no longer processed or examined. ⁽¹⁾ Department of Pathology, Faculty of Veterinary Science, Medical University of Southern Africa, P.O. Box 59, Medunsa 0204 ⁽²⁾ Department of Parasitology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110 TABLE 1 Amended list of the helminth parasites of warthogs in the Republics of South Africa and Namibia with reference to the first record and the authors of the descriptions used to assist with the identification | Helminth species | First record | Identification + + | | | |---|--|--|--|--| | Trematodes Gastrodiscus aegyptiacus Railliet, 1893 Schistosoma sp. | Horak <i>et al.</i> , 1988
Horak <i>et al.</i> , 1988 | | | | | Cestodes Echinococcus sp. larvae Moniezia mettami Baylis, 1934 Paramoniezia phacochoeri Baylis, 1927 Taenia crocutae larvae Taenia hyaenae larvae Taenia regis larvae | Horak et al., 1988
Ortlepp, 1964
Baylis, 1927
Horak et al., 1988
Horak et al., 1988
Horak et al., 1988 | Baylis, 1934 Baylis, 1927 +++++ | | | | Nematodes Ascaris phacochoeri Gedoelst, 1916 Cooperia hungi Mönnig, 1931 Haemonchus krugeri Ortlepp, 1964 Impalaia nudicollis Mönnig, 1931 Impalaia tuberculata Mönnig, 1923 Microfilaria sp. (sensu Neitz, 1931) Microfilariae Murshidia hamata Daubney, 1923 Murshidia pugnicaudata (Leiper, 1909) Odontogeton phacochoeri Allgrén 1921 Oesophagostomum mocambiquei Ortlepp, 1964 Oesophagostomum mwanwae Duthy, 1947 Oesophagostomum mwanzae Daubney, 1924 Oesophagostomum mocbaudi Daubney, 1926 Oesophagostomum santosdiasi Ortlepp, 1964 Oesophagostomum simpsoni Goodey, 1924 Physocephalus sexalatus Diesing, 1861 Probstmayria vivipara Ransom, 1911 Strongyloides spp. Trichostrongylus falculatus Ransom, 1911 Trichostrongylus deflexus Boomker & Reinecke, 1989 Trichostrongylus thomasi Mönnig, 1932 Trichuris sp. | Ortlepp, 1939 This paper Horak et al., 1988 Horak et al., 1983 Horak et al., 1988 Neitz, 1931 Palmieri et al., 1985 Daubney, 1923 Daubney, 1923 Allgrén, 1921* Ortlepp, 1964 Horak et al., 1983 Ortlepp, 1964 Ortlepp, 1964 Ortlepp, 1964 Ortlepp, 1964 Ortlepp, 1964 Ortlepp, 1964 Horak et al., 1983 Le Roux, 1940 Horak et al., 1988 Horak et al., 1988 Horak et al., 1988 Horak et al., 1988 | Ortlepp, 1939 Gibbons, 1981 + Boomker, 1977 + Daubney, 1923 Daubney, 1923 Ortlepp, 1964 Ortlepp, 1964 + Yorke & Maplestone, 1926 Yorke & Maplestone, 1926 + Boomker & Reinecke, 1989 Mönnig, 1932 + | | | - + Not found in this survey - * After Round (1968) The ectoparasites were collected as described by Horak et al. (1988). # Parasite counts and identification The lung, heart and liver washings of the first 16 animals, as well as the washings of the stomach walls and the aliquots of the small intestinal ingesta were examined under a stereoscopic microscope and all the worms removed. The ingesta of the large intestines were examined in a flat-bottomed tray and all the macroscopically visible worms removed. Because of the large numbers of *Probstmayria vivipara* present, a ½00th aliquot was made of each of the large intestinal ingesta after they had been macroscopically examined. The aliquot was examined under a stereoscopic microscope and *Probstmayria vivipara* counted. With the exception of *Probstmayria vivipara*, all the worms were cleared in lactophenol and examined under a standard microscope with Nomarski's differential intereference illumination. They were identified with the aid of the descriptions by the authors listed in Table 1. This table also lists the helminth recovered to date from warthogs in South Africa and Namibia. The ectoparasites were counted as described by Horak et al. (1988). ## **RESULTS** The total monthly rainfall and the mean monthly minimum and maximum atmospheric temperatures for the period August 1988–July 1989 are graphically illustrated in Fig. 1. FIG. 1 Mean monthly rainfall (a) and minimum and maximum temperatures (b) at the Hoedspruit Nature Reserve # Helminths The total numbers of helminths recovered from all the warthogs are summarised in Table 2. TABLE 2 The helminths recovered from 41 warthogs from the Hoedspruit Nature Reserve | Helminth species | Larvae | Adults | Total | Number of
warthogs
infected | |--|--|---|---|---| | Reserve (28 warthogs) Moniezia/Paramoniezia* Taenia regis Echinococcus Ascaris phacochoeri Cooperia hungi Impalaia tuberculata Murshidia hamata Murshidia pugnicaudata Murshidia spp. Oesophagostomum mocambiquei Oesophagostomum mwanzae Oesophagostomum spp. Physocephalus sexalatus Probstmayria vivipara Trichostrongylus thomasi Trichostrongylus spp. females | # 2 1 0 0 0 + + 118 + 2 901 80 \$ 0 0 - | 109
#
114
100
150
34 361
6 215
—
90 058
37 684
—
9 494
\$
20
60
50 | 109 2 1 114 100 150 34 361 6 215 118 90 058 37 684 2 901 9 574 267,255 million 20 60 50 | 12
2
1
13
1
5
28
28
28
27
28
13
23
23
24
5 | | Mean nematode burden** | 111 | 6 368 | 6 479 | | | Base (13 warthogs) Moniezia/Paramoniezia* Ascaris phacochoeri Murshidia hamata Murshidia pugnicaudata Murshidia spp. Oesophagostomum mocambiquei Oesophagostomum mwanzae Oesophagostomum spp. Physocephalus sexalatus Probstmayria vivipara Trichostrongylus spp. females | #
0
+
+
222
+
+
94
0
\$ | 53
32
21 734
4 588
-
8 507
4 090
-
610
\$ | 53
32
21 734
4 588
222
8 507
4 090
94
610
148,331 million | 5
5
13
12
5
12
12
12
3
10
13
1 | | Mean nematode burden** | 24 | 3 044 | 3 068 | | ** Excluding Probstmayria vivipara # Not found in warthogs \$ Larvae and adults not counted separately + Counted together under the respective genera - Not applicable Eleven namatode species, 1 or 2 cestode species and the larval stages of 2 cestode were recovered from warthogs shot in the reserve. Of these, Murshidia hamata, Murshidia pugnicaudata, Oesophagostomum mwanzae, and Probstmayria vivipara occurred in all the warthogs. Oesophagostomum mocambiquei was recovered from 27 warthogs and Physocephalus sexalatus from 23. The remaining nematodes occured in less than 50 % of the animals examined. Probstmayria vivipara was the most abundant of the nematodes, followed by Oesophagostomum Oesophagostomum' mwanzae, mocambiquei, Murshidia hamata, Physocephalus sexalatus and Murshidia pugnicaudata. Individual adult nematode burdens, excluding Probstmayria vivipara varied from 445 to 41 950 and the mean total adult nematode burden, excluding Probstmayria vivipara, was 6 368. Eight species of nematodes and 1 or 2 cestode species were recovered from the 13 warthogs shot in the base. Probstmayria vivipara and Murshidia hamata were recovered from all these warthogs and Murshidia pugnicaudata, Oesophagostomum mocambiquei and Oesophagostomum mwanzae from 12 warthogs each. Physocephalus sexalatus occurred in 10 animals. Probstmayria vivipara was again the most abundant nematode, followed by Murshidia hamata, Oesophagostomum mocambiquei, Murshidia pugnicaudata and Oesophagostomum mwanzae. The individual adult nematode burdens, excluding Probstmayria vivipara, varied from 91 to 7 260 and the mean total adult nematode burden, excluding Probstmayria vivipara, was 3 044. Ascaris phacochoeri and the Moniezia/Paramoniezia spp. were only recovered from animals younger than 18 months, while Oesophagostomum spp., Murshidia spp., Physocephalus sexalatus and Probstmayria vivipara were already present in the youngest animal in the survey, a male, 3-4 months old, shot in the reserve during August 1988. No differences in the mean monthly nematode burdens or nematode species composition between the ages or the sexes of the warthogs shot at either locality, were evident. The seasonal fluctuations of Oesophagostomum spp., Murshidia spp. and Probstmayria vivipara are graphically illustrated in Fig. 2-4. In both groups of warthogs, peaks in the numbers of Oesophagostomum spp. occurred during the cooler months of the year. The high peak seen in warthogs from the reserve shot during August 1988, however, is due to 1 animal harbouring 30 700 O. mocambiquei, and probably does not reflect the true situation. No seasonal pattern of abundance was evident for the Murshidia spp. The largest numbers of Probstmayria vivipara were recovered during the cooler months of the year, with a peak occurring during October and November 1988 in the warthogs from the reserve and the base, respectively. TABLE 3 Arthropod parasites recovered from 28 warthogs from the Hoedspruit Nature Reserve, eastern Transvaal | Arthropod species | | Total numbers of arthropods recovered | | | | | |---|--|--|---|-----------------|---|--| | Fleas | Ma | Males | | emales | Total | warthogs
infested | | Echidnophaga inexpectata/larina
Moeopsylla sjoestedti | 7 | 7 098* | | | 7 098
204 | 27
18 | | Lice | Nymphs | Nymphs Males Females | | Total | | | | Haematopinus phacochoeri | 1 228 | 170 |) | 200 | 1 598 | 14 | | Ixodid ticks | Larvae | Nymphs | Males | Females | Total | | | Amblyomma hebraeum
Amblyomma marmoreum
Boophilus decoloratus
Hyaloomma truncatum
Rhipicephalus appendiculatus
Rhipicephalus evertsi evertsi
Rhipicephalus simus
Rhipicephalus zambeziensis | 158
2
126
0
2
2
0
0 | 1 228
0
0
0
0
2
0
4 | 254
()
()
()
()
()
() | 0 0 0 4 (0) 0 0 | 1 720
2
126
14
2
4
122
6 | 28
1
3
3
1
2
16
2 | | Argasid ticks | Larvae | Nym | ohs | Adults | Total | | | Ornithodoros porcinus porcinus | 0 | 232 | 2 | 0 | 232 | 13 | ^{() =} Number of maturing female ticks, i.e. the idiosoma of A. hebraeum > 9.0 mm; H. truncatum > 7.5 mm; R. simus > 6.0 mm TABLE 4 Arthropod parasites recovered from 13 warthogs on a military base near Hoedspruit, eastern Transvaal | Arthropod species | Total numbers of arthropods recovered | | | | | Number of | |--|---------------------------------------|---------|------------|-----------------|----------------------|-----------| | Fleas | Males Fe | | emales | Total | warthogs
infested | | | Echidnophaga inexpectata/larina
Moeopsylla sjoestedti | 2 1 036* | | | 1 036
8 | 13
3 | | | Lice | Nymphs | Mai | es Females | | Total | | | Haematopinus phacochoeri | 534 | 46 | , | 68 | 648 | 8 | | Ixodid ticks | Larvae | Nymphs | Males | Females | Total | | | Amblyomma hebraeum
Rhipicephalus simus | 0 | 18
0 | 2
40 | 2 (2)
12 (2) | 30
52 | 8
8 | | Argasid ticks | Larvae | Nymphs | | Adults | Total | | | Ornithodoros porcinus porcinus | 0 | 2 | | 2 | 4 | 2 | ^{() =} Number of maturing female ticks, i.e. the idiosoma of A. hebraeum > 9.0 mm and R. simus > 6.0 mm ## Arthropods The total numbers of arthropods recovered from the warthogs in the reserve and on the base are summarised in Tables 3 and 4. The warthogs harboured 3 flea species, 1 louse species 8 ixodid tick species and 1 argasid tick species. The animals in the reserve not only harboured a greater variety but also greater numbers of parasites than the animals on the base. FIG. 2 Seasonal fluctuation in the numbers of *Oesophagosto*mum spp. and *Murshidia* spp. in warthogs in the reserve The seasonal abundance of the adults of the tick Rhipicephalus simus, the fleas Echidnophaga inexpectata and Echidnophaga larina combined and the louse Haematopinus phacochoeri for both groups of warthogs are graphically illustrated in Fig. 5-7. Because of the large variation in the burdens of the lice, the burdens have been transformed to their square roots (Fig. 7). FIG. 3. Seasonal fluctuation in the numbers of *Oesophagosto-mum* spp. and *Murshidia* spp. in warthogs on the military base ^{* =} Sexes not determined ^{* =} Sexes not determined FIG. 4 Seasonal fluctuation in the numbers of *Probstmayria vivi*para in warthogs in the reserve and the military base FIG. 5 Seasonal fluctuation in the numbers of Rhipicephalus simus on warthogs in the Hoedspruit Nature Reserve FIG. 6 Seasonal fluctuation in the numbers of *Echidnophaga* spp. on warthogs in the Hoedspruit Nature Reserve FIG. 7 Seasonal fluctuation in the numbers of *Haematopinus* phacochoeri on warthogs in the Hoedspruit Nature Reserve. Although variation was considerable, peak flea burdens were generally recorded from August to November and May to July, while peak burdens of immature and adult *H. phacochoeri* were present during August and September. No lice were recovered during December and January. Adult *R. simus* were present from October to June, with the largest numbers being recovered from December to April. The other ectoparasites did not exhibit clear patterns of seasonal abundance. ## **DISCUSSION** ## Helminths Fourteen helminth species were recovered in this study from the warthogs in the reserve. This is 5 species fewer than from warthogs in the KNP, but 4 more than from warthogs in Namibia (Horak, Biggs, Hanssen & Hanssen, 1983; Horak et al., 1988). At least 9 helminths species were recovered from the animals on the base. The small number of species recovered from warthogs on the base is probably firstly due to the fact that they are an isolated population, consisting of about 80 animals, that has no contact with other warthogs, and secondly because very few other animals species occur on the base. Thus, if cross-infection does take place it can only occur to a limited degree. Neither the carnivore associated Taenia sp. and Echinococcus sp. larvae, nor Cooperia hungi, Impalaia tuberculata or the Trichostrongylus spp. were recovered from these warthogs, although they were present in those in the reserve. The difference in the mean total adult nematode burdens between the 2 groups of warthogs is presumably also due to the above-mentioned factors. Ascaris phacochoeri, which we consider a definitive parasite of warthogs, has previously been recorded from warthogs from Zululand (Ortlepp, 1939, 1964) and the KNP (Horak et al., 1988). The mean adult burden of the warthogs from the reserve was approximately double that of those in the KNP, while that of the warthogs from the base was about the same (Horak et al., 1988). Only 1 immature Ascaris sp. was recovered from the warthogs from Namibia (Horak, Biggs, Hanssen & Hanssen, 1983). C. hungi is a common parasite of impala, Aepyceros melampus (Horak, 1978b). Although the spicules of the specimens recovered during this survey were of normal size, the fact that they were present in only 1 animal confirms their status as an accidental parasite of warthogs. This assumption is augmented by the fact that although large numbers of impala occur in the area in the KNP where warthogs were previously surveyed, C. hungi was not found in a single warthog (Horak et al., 1988). All the *I. tuberculata* recovered in this survey were considerably smaller and the males' spicules shorter than those in antelope (Boomker, 1977; Gibbons, Durette-Desset & Daynes, 1977). This agrees with the findings of Horak *et al.* (1988) for *I. tuberculata* from warthogs in the KNP and those of Horak, Biggs, Hanssen & Hanssen (1983) for *Impalaia nudicollis* from warthogs in Namibia. It indicates that both *Impalaia* species can survive in warthogs but that these animals are not preferred hosts. Worms of the genus Murshidia were not recovered from warthogs in Mozambique or Namibia (Ortlepp, 1964; Horak, Biggs, Hanssen & Hanssen, 1983). Two species of this genus were, however, present in warthogs in the Central African Republic (Troncy, Graber & Thal, 1972), Zululand (Daubney, 1923; Ortlepp, 1964), on the escarpment of the eastern Transvaal and in the eastern Transvaal Lowveld (Ortlepp, 1964; Horak et al., 1988). Only Murshidia hamata was present in a warthog from the north-western Transvaal (Boomker & Horak, unpublished data, 1989). Horak et al. (1988) found large numbers of Murshidia spp. in warthogs in the KNP but only moderate numbers were recovered during this survey. It appears that certain individuals harbour large numbers of *Oesophagostomum* spp. or *Murshidia* spp. but the factors predisposing to such burdens are not known. With the exception of Oesophagostomum santosdiasi, which was recovered from only 1 warthog in the KNP (Horak et al., 1988), the same Oesophagostomum spp. as those in the KNP were present in warthogs in this survey. Oesophagostomum mwanzae appears to have a very wide distribution and has been recovered from warthogs in the Central African Republic (Troncy et al., 1972), in Uganda, Kenya, Tanzania and Malawi (Daubney 1924; Goodey, 1924), in northern Mozambique and on the escarpment of the eastern Transvaal (Ortlepp, 1964), in the eastern Transvaal Lowveld (Horak et al., 1988), in the north-western Transvaal (Boomker & Horak, unpublished data, 1989) and in northern Namibia (Horak, Biggs, Hanssen & Hanssen, 1983). In the survey of warthogs in Namibia it was outnumbered by Oesophagostomum mpwapwae and in the eastern Transvaal Lowveld by Oesophagostomum mocambiquei. The latter worm has only been recorded from warthogs on the eastern side of the continent, namely northern Mozambique (Ortlepp, 1964) and the eastern Transvaal escarpment and Lowveld (Ortlepp, 1964; Horak et al., 1988; present survey). The largest number of *Oesophagostomum* spp. recovered from a single warthog in the present survey was 35 000 worms. This is 4 490 more than recovered from a single animal in Namibia (Horak, Biggs, Hanssen & Hanssen, 1983) and 27 600 more than from an animal in the KNP (Horak *et al.*, 1988). As is apparent from the various surveys, burdens of nematodes of this genus may vary considerably. From Fig. 1a & 2 it seems that peak numbers of Oesophagostomum spp. occurred in warthogs in the reserve approximately 3 months after good rainfall, and that the size of the peak depends on the amount of rain. During October 1988 approximately 30 mm rain fell and a small peak occurred during January 1989. Rainfall in excess of 100 mm was measured during February 1989 and 98 mm during March 1989. Small numbers of Oesophagostomum spp. were recovered during May 1989 but a peak was reached during June 1989. No such pattern was, however, seen in the warthogs on the base, nor was it apparent for the Murshidia spp. or Probstmayria vivipara in both groups of warthogs. Physocephalus sexalatus occurs in warthogs, bushpigs and domestic pigs in South Africa (Ortlepp, 1964, Horak, 1978a; Reinecke, 1983; Horak et al., 1988). The numbers of Physocephalus sexalatus recovered during this survey are similar to those in warthogs in Namibia, but are considerably greater than those in warthogs in the KNP. Contrary to the findings of Horak et al. (1988), no seasonal pattern of abundance was evident in this survey. The related Ascarops strongylina has been recorded from bushpigs in the northern Transvaal (Ortlepp, 1964) and domestic pigs (Horak, 1978a) but has as yet not been recorded from warthogs. As in the case of the warthogs in Namibia and the KNP, *Probstmayria vivipara* occurred in vast numbers and peak burdens were present during the cooler months of the year. Trichostrongylus deflexus (= Trichostrongylus colubriformis of Horak, Biggs, Hanssen & Hanssen, 1983 and Trichostrongylus instabilis of Horak et al., 1988) is a recently described nematode of several antelope species (Boomker & Reinecke, 1989). It appears to infect a wide range of hosts, but its presence in warthogs should be regarded as accidental. Trichostrongylus thomasi is an abomasal parasite of a number of antelope species (Round, 1968; Horak, Meltzer & De Vos, 1982; Horak, Brown, Boomker, De Vos & Van Zyl, 1982; Horak, De Vos & Brown, 1983; Boomker, Horak & De Vos, 1986, 1989) and also occurs in the stomach of Burchell's zebra (Scialdo, Reinecke & De Vos, 1982) and warthogs (Horak et al., 1988; present survey). It fills the same niche in wild animals as is occupied by Trichostrongylus axei in domestic animals, but should be regarded as an accidental parasite of warthogs. Since Moniezia/Paramoniezia sp. were recovered only from the younger animals, we postulate that immunity against these tapeworms develops after initial infection, similar to that seen in domestic ruminants infected with Moniezia expansa (Reinecke, 1983). # Arthropods The smaller numbers of species and smaller overall numbers of ectoparasites recovered from the warthogs on the military base than from those in the nature reserve are probably due to the same factors affecting their respective helminth burdens, as mentioned earlier. Only Echidnophaga larina was recovered from the warthogs in Namibia (Horak, Biggs, Hanssen & Hanssen, 1983), while the animals in the KNP and the present survey harboured both Echidnophaga larina and Echidnophaga inexpectata (Horak et al., 1988). As in the case of the KNP warthogs, the 2 flea species could not be counted separately because of their stick-tight habit, and consequently many were counted in situ. This also prevented the determination of their sex. Although considerable variation occurred in the monthly mean flea burdens of the warthogs in Namiba, the KNP and the present survey, it would appear as if the largest numbers of fleas are present during the period May or June to November or December. The mean burdens of *Moeopsylla sjoestedti* on the warthogs in the HNR were higher than those on the warthogs in the KNP (Horak et al., 1988). The warthogs examined in Namibia did not harbour this flea (Horak, Biggs, Hanssen & Hanssen, 1983). No pattern of seasonal abundance was evident and more female than male fleas were recovered. In Namibia peak burdens of Haematopinus phacochoeri were recorded on warthogs in September of 1 year and June the following year (Horak, Biggs, Hanssen & Hanssen, 1983), while in the KNP peak burdens were present from July to September (Horak et al., 1988). The recovery of large numbers of lice during August and September in the present survey confirms the winter to early spring abundance of this species. The complete absence of lice on the KNP warthogs during January 1981 (Horak et al., 1988) and during December and January in this survey leads one to speculate as to where and in what stage these permanent ectoparasites oversummer. The most likely explanation would seem to be as eggs attached to the hair of the warthogs or loose in the burrows of the animals. It could also be that the piglets, which are generally born during November or December in South Africa (Smithers, 1983), acquire infestation from their dams and ensure the survival of the lice during the summer months. This was indeed so in the KNP where a 1-month old piglet examined during January 1980 was fairly heavily infested compared with the absence of infestation on the other warthogs slaughtered at the same time. The same, however, did not apply in the case of a similarly aged warthog examined during January 1981. If one excludes the adult ticks of the single warthog in the KNP that carried an exceptionally large burden of Amblyomma hebraeum, then the mean burdens for the warthogs examined there were 74 larvae, 59 nymphs and 14 adults (Horak et al., 1988). The mean burden for the warthogs examined in the reserve in the present survey was 6 larvae, 44 nymphs and 12 adults. With the exception of the larval numbers (for which we have no explanation), the mean burdens of the 2 groups of warthogs were thus reasonably similar. These findings confirm that warthogs are one of the preferred hosts of adult ticks of this species. The immature stages, and more particularly the larvae, feed on a large variety of mammals and also one some ground-nesting birds (Theiler, 1962; Horak, MacIvor, Petney & De Vos, 1987). Consequently, the immature stages which feed on warthogs are not solely responsible for generating the adult burdens on the same animals. The warthogs in Namibia, the KNP and the present survey were infested with adult *Hyalomma truncatum* but burdens were never very large (Horak, Biggs, Hanssen & Hanssen, 1983: Horak *et al.*, 1988). Preferred hosts of the adults are large herbivores such as zebras, eland and cattle (Horak, 1982; Rechav, 1986; Horak & MacIvor, 1987). Scrub hares are preferred hosts of the immature stages, which are also found on rodents (Rechav, 1986: Horak & MacIvor, 1987). Horak et al. (1988) state that in the KNP adult Rhipicephalus simus seem to prefer monogastric animals such as Burchell's zebras, carnivores and wart-hogs rather than ruminants. The fairly large numbers of adults recovered from the warthogs in the present investigation confirm their observations for this host species. The immature stages of R. simus feed on rodents (Norval & Mason, 1981). The period of peak adult abundance from December to April corresponds to that of January to April with a peak in February on the warthogs in the KNP (Horak et al., 1988). The mean burden of R. simus on the warthogs in that survey was more than double that in the present study. The larvae of Amblyomma marmoreum utilise a large number of mammals and some ground-frequenting birds as hosts (Horak et al., 1987). Their presence on the warthogs, albeit in small numbers, is therefore not unexpected. We consider Boophilus decoloratus, Rhipicephalus appendiculatus, Rhipicephalus evertsi evertsi and Rhipicephalus zambeziensis to be accidental infestations. Their occurrence on the warthogs probably reflects their periods of peak seasonal abundance rather than host preference. The presence of *Ornithodoros porcinus porcinus* on warthogs that are out of their burrows has been discussed by Horak *et al.* (1988). Its recovery from warthogs in Namibia, the KNP and the present survey indicates that this must be considered a normal occurrence. ## **ACKNOWLEDGEMENTS** We thank the South African Defence Force for placing the animals at our disposal, and Messrs D. Breytenbach, P. Oosthuizen, C. du Plessis and J. Botha for assistance with the autopsies. This study was partly funded by the Foundation for Research Development. ## REFERENCES - ACOCKS, J. P. H., 1988. Veld types of South Africa. *Memoirs of the Botanical Survey of South Africa*, No. 57, x + 146 pp. + 2 maps. - BAYLIS, H. A., 1927. On two adult cestodes from wild swine. Annals and Magazine of Natural History, Series 9, 19, 417-425. - BAYLIS, H. A., 1934. Notes of four cestodes. Annals and Magazine of Natural History, Series 10, 14, 587-594. - BOOMKER, J., 1977. A revision of the genus Impalaia Mönnig, 1924. Onderstepoort Journal of Veterinary Research, 44, 131-138. - BOOMKER, J., HORAK, I. G. & DE VOS, V., 1986. The helminth parasites of various artiodactylids from some South African nature reserves. *Onderstepoort Journal of Veterinary Research*, 53, 93-102. - BOOMKER, J. & REINECKE, R. K., 1989. Trichostrongylus deflexus n. sp. (Nematoda: Trichostrongylidae) from several antelope species. South African Journal of Wildlife Management, 19, 21-25. - BOOMKER, J., HORAK, I. G. & DE VOS, V., 1989. Parasites of South African wildlife. IV. Helminths of kudu, *Tragelaphus strepsiceros*, in the Kruger National Park. *Onderstepoort Journal of Veterinary Research*, 56, 111-121. - DAUBNEY, R., 1923. A note on two species of the genus Murshidia (Nematoda: Strongyloidea) parasitic in the warthog. Annals and Magazine of Natural History, Series 9, 11, 256-263. - DAUBNEY, R., 1924. Description of a new nematode, Oesophagostomum mwanzae, from the warthog. Annals and Magazine of Natural History, Series 9, 13, 542-546. - GIBBONS, LYNDA M., DURETTE-DESSET, MARIE-CLAUDE & DAYNES, P., 1977. A review of the genus *Impalaia* Mönnig, 1923 (Nematoda: Trichostrongyloidea). *Annales de Parasitologie (Paris)*, 52, 435-446. - GIBBONS, LYNDA M., 1981. Revision of the African species of the genus *Cooperia* Ransom, 1907 (Nematoda: Trichostrongylidae). Systematic Parasitology, 2, 219-252. - GOODEY, T., 1924. Some new members of the genus Oesophagostomum from the roan antelope and the warthog. Journal of Helminthology, 2, 135-148. - HORAK, I. G., 1978a. Parasites of domestic and wild animals in South Africa. VIII. Helminths of pigs kept under semi-intensive conditions. Onderstepoort Journal of Veterinary Research, 45, 49-53. - HORAK, I. G., 1978b. Parasites of domestic and wild animals in South Africa. X. Helminths in impala. Onderstepoort Journal of Veterinary Research, 45, 221-228. - HORAK, I. G., 1982. Parasites of domestic and wild animals in South Africa. XV. The seasonal prevalence of ectoparasites on impala and cattle in the northern Transvaal. Onderstepoort Journal of Veterinary Research, 49, 85-93. - HORAK, I. G., MELTZER, D. G. A. & DE VOS, V., 1982. Helminth and arthropod parasites of springbok Antidorcas marsupialis in the Transvaal and western Cape Province. Onderstepoort Journal of Veterinary Research, 49, 7-10. - HORAK, I. G., BROWN, MOIRA R., BOOMKER, J., DE VOS, V. & VAN ZYL, ELSA A., 1982. Helminth and arthropod parasites of blesbok, Damaliscus dorcas phillipsi and of bontebok, Damaliscus dorcas dorcas Onderstepoort Journal of Veterinary Research, 49, 139-146. HORAK, I. G., DE VOS, V. & BROWN, MOIRA R., 1983. Para- HORAK, I. G., DE VOS, V. & BROWN, MOIRA R., 1963. Falasites of domestic and wild animals in South Africa. XVI. Helminths and arthropod parasites of blue and black wildebeest (Connochaetes taurinus and Connochaetes gnou). Onderstepoort Journal of Veterinary Research, 50, 243-255. - HORAK, I. G., BIGGS, H. C., HANSSEN, TAMMY S. & HANSSEN, ROSE E., 1983. The prevalence of helminth and arthropod parasites of warthog, *Phacochoerus aethiopicus*, in South West Africa/Namibia. *Onderstepoort Journal of Veterinary Research*, 50, 145-148. - 50, 145-148. HORAK, I. G. & MACIVOR, K. M. DE F., 1987. The scrub hare, a reliable indicator of the presence of Hyalomma ticks in the Cape Province. Journal of the South African Veterinary Association, 58, 15-19 - ciation, 58, 15-19. HORAK, I. G., MACIVOR, K. M. DE F., PETNEY, T. N. & DE VOS, V., 1987. Some avian and mammalian hosts of Amblyomma hebraeum and Amblyomma marmoreum (Acari: Ixodidae). Onderstepoort Journal of Veterinary Research, 54, 397-403. - HORAK, I. G., BOOMKER, J., DE VOS, V. & POTGIETER, F. T., 1988. Parasites of domestic and wild animals in South Africa. XXIII. Helminths and arthropods of warthogs, *Phacochoerus aethiopicus*, in the eastern Transvaal Lowveld. *Onderstepoort Journal of Veterinary Research*, 55, 145-152. - LE ROUX, P. L., 1940. On the division of the genus Oesophagostomum Molin, 1861, into subgenera and the creation of a new genus for the oesophagostomes of the warthog. Journal of Helminthology, 38, 1-20. - MÖNNIG, H. O., 1932. New strongylid nematodes of antelopes. (Preliminary notes). Journal of the South African Veterinary Medical Association, 3, 171-175. - NEITZ, W. O., 1931. Blood parasites of game in Zululand. Preliminary report. 17th Report of the Director of Veterinary Services, Department of Agriculture, Union of South Africa, pp. 45-60. - NORVAL, R. A. I. & MASON, C. A., 1981. The ticks of Zimbabwe. II. The life cycle, distribution and hosts of Rhipicephalus simus Koch, 1844. Zimbabwe Veterinary Journal, 12, 2-9. - ORTLEPP, R. J., 1939. Observations on Ascaris phacochoeri Gedoelst, 1916, a little known nematode parasite from the - warthog. Volumen Jubilare Pro Prof. Sadao Yoshida, 2, 307-309. - ORTLEPP, R. J., 1964. Observations on helminths parasitic in warthogs and bushpigs. *Onderstepoort Journal of Veterinary Research*, 31, 11–38. - PALMIERI, J. R., PLETCHER, J. M., DE VOS, V. & BOOMKER, J., 1985. A new filarial nematode (Onchocercidae) from warthogs (Phacochoerus aethiopicus) of the Kruger National Park. Journal of Helminthology, 59, 241-245. - RECHAV. Y., 1986. Seasonal activity and hosts of the vectors of Crimean-Congo haemorrhagic fever in South Africa. South African Medical Journal, 69, 364-368. - REINECKE, R. K., 1983. Veterinary helminthology. Durban & Pretoria: Butterworths. - ROUND. M. C., 1968. Check list of the parasites of African mammals of the orders Carnivora, Tubulidentata, Proboscidea, Hyracoidea, Artiodactyla and Perissodactyla. *Technical Communication of the Commonwealth Bureau of Helminthology*, 38, vi + 252 pp. - SCIALDO, ROSINA C., REINECKE, R. K. & DE VOS, V., 1982. Seasonal incidence of helminths in the Burcell's zebra. Onderstepoort Journal of Veterinary Research, 49, 127-130. - SMITHERS, R. H. N., 1983. The mammals of the southern African subregion. Pretoria: University of Pretoria. - THEILER, GERTRUD, 1962. The Ixodoidea parasites of vertebrates in Africa south of the Sahara (Ethiopian Region) Report to the Director of Veterinary Services, Onderstepoort, Project S 9958, 255 pp., mimeographed. - TRONCY. P. M., GRABER, M. & THAL. J., 1972. Enquête sur la pathologie de la faune sauvage en Afrique centrale. Le parasitisme des Suidés sauvages. Premiers résultats d'enquête. Revue d'Elevage et d'Medicine veterinaire Pays Tropicale, 25, 205-218. - YORKE, W. & MAPLESTONE, P. A., 1926. The nematode parasites of vertebrates. London: J. & A. Churchill.