See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/248899844

A penguin-chewing louse (Insecta : Phthiraptera) phylogeny derived from morphology

Article in Invertebrate Systematics • January 2004
DOI: 10.1071/IS03022

Citations

10

2 authors:

Adrian Mark Paterson Lincoln University New Zealand
65 PUBLICATIONS 1,080 CITATIONS
142 PUBLICATIONS 2,319 CITATIONS
SEE PROFILE

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Local Adaptation or Microevolution, that is the Question: How Birds Respond to the Novel Environment. View project

Project Behavioural and Molecular Evolution of Seabirds and their Ectoparasitic Lice View project

A penguin-chewing louse (Insecta: Phthiraptera) phylogeny derived from morphology

Jonathan C. Banks ${ }^{\mathrm{A}, \mathrm{B}, \mathrm{C}}$ and Adrian M. Paterson ${ }^{\mathrm{A}}$
${ }^{\text {A}}$ Ecology and Entomology Group, PO Box 84, Lincoln University, Canterbury 8150, New Zealand.
${ }^{B}$ Present address: Entomology, 320 Morrill Hall, 505 South Goodwin Ave, University of Illinois, Urbana, IL 61801, USA.
${ }^{\mathrm{C}}$ To whom correspondence should be addressed. Email: jbanks@life.uiuc.edu

Abstract

Penguins are parasitised by 15 species of lice in the genera Austrogoniodes and Nesiotinus and present an opportunity to analyse phylogenetic relationships of two complete genera of chewing lice parasitising a monophyletic group of hosts. Taxonomy of penguin lice has been revised several times, including the erection of the genus Cesareus to contain some of the penguin-chewing louse species. Additionally, other groups of species within Austrogoniodes have been proposed. We constructed a phylogeny for all the chewing lice parasitising penguins from 46 parsimony-informative morphological characters and found support for two groups within Austrogoniodes, but little support for the Cesareus genus. Austrogoniodes metoecus, the only Austrogoniodes species parasitising a bird other than a penguin, was basal in the phylogeny, which suggests that if A. metoecus did originate from a louse species parasitising penguins, the host-switching event was unlikely to have been recent. A superficial comparison of louse and penguin phylogenies identified some potential instances of co-speciation. However, a full analysis of co-phylogenetic relationships between penguins and their lice awaits the publication of a better-resolved penguin phylogeny.

Additional keywords: Austrogoniodes, Cesareus, cladistic, co-evolution, co-phylogeny, lice, Nesiotinus, Sphenisciformes.

Introduction

Penguins, order Sphenisciformes, are parasitised by 15 species of chewing lice (Phthiraptera:Philopteridae) from two genera, Austrogoniodes Harrison, 1915 (14 species) and Nesiotinus Kellogg, 1903 (one species) (Clay 1967; Pilgrim and Palma 1982; Palma 1999; Banks and Palma 2003). The penguin lice present a relatively rare opportunity to analyse the phylogenetic relationships between all the species of two genera of chewing lice parasitising a distinctive monophyletic host order.

Penguin louse systematics has been revised several times. The first penguin-chewing louse described was Goniodes brevipes (Giebel, 1876) parasitising king penguins, Aptenodytes patagonicus J. F. Miller, 1778. Subsequently, species of penguin-chewing lice, with the exception of Nesiotinus demersus Kellogg, 1903, were classified in Goniocotes Burmeister, 1838 until Harrison (1915) erected Austrogoniodes to contain all species of penguin lice except N. demersus. Harrison (1937) noted in the species descriptions of A. hamiltoni Harrison, 1937 and A. mawsoni

Harrison, 1937 that the two species differed morphologically from the rest of the Austrogoniodes species and von Kéler (1952) later erected the genus Cesareus to contain these two species along with A. waterstoni (Cummings, 1914) and the type species for the genus, C. concii (von Kéler, 1952). Hopkins and Clay (1953) considered all Cesareus belonged in Austrogoniodes, but von Kéler (1954) described C. bicornutus (von Kéler 1954) parasitising Eudyptes chrysolophus (Brandt, 1837) and transferred A. macquariensis Harrison, 1937 to Cesareus. Although Cesareus is still used occasionally, for example Mey et al. (2002), most authors consider all Cesareus species to belong in Austrogoniodes.

The genus Austrogoniodes has also been subdivided informally. Clay (1967) noted that there were two morphologically distinct groups within Austrogoniodes, with A. bicornutus, A. concii, A. hamiltoni, A. keleri Clay, 1967 and A. macquariensis comprising one group and A. bifasciatus (Piaget, 1885), A. cristati von Kéler, 1952 and A. demersus (von Kéler, 1952) in a second group.

Austrogoniodes metoecus Clay, 1971 is unusual within the genus because it parasitises the musk duck, Biziura
lobata (Shaw, 1796) of Australia. It is the only species of Austrogoniodes that parasitises a species outside the penguin order and it has been speculated that the establishment of A. metoecus on the musk duck has been a relatively recent switch to a new host species (Clay 1971). If the switch has been recent, the present geographical distribution of the musk duck suggests blue penguins, Eudyptula minor (J. R. Forster, 1781), as the most likely source of the musk duck louse.

Other studies have used morphological characters to examine relationships within and between chewing louse genera to support taxonomic classifications. For example, a study using 58 morphological characters of 122 species of Geomydoecus Ewing, 1929 and Thomomydoecus Price \& Emerson, 1972 parasitising pocket gophers found a moderately resolved phylogeny that supported the existing taxonomy (Page et al. 1995). Another study that used morphological characters to investigate relationships within Dennyus Neumann, 1906 lice parasitising swiftlets found robust support for earlier subdivisions within Dennyus (Clayton et al. 1996). Cladistic analysis of morphological characters has also been used to examine relationships between phthirapteran genera and found well-resolved phylogenies that broadly agreed with previous classification schemes (Smith 2000, 2001).

Although the penguin-chewing lice are well described and a taxonomic key has been produced and updated (Clay 1967, 1971; Banks and Palma 2003), phylogenetic relationships within the penguin lice have not been analysed quantitatively. This study presents a cladistic analysis of louse morphological characters to investigate phylogenetic relationships within Austrogoniodes, including whether a cladistic analysis would support Cesareus or the informal groups of Clay (1967), and examines the origin of A. metoecus parasitising the musk duck. We superficially compare the louse phylogeny to a penguin phylogeny, but a more detailed comparison awaits a better-resolved penguin phylogeny.

Materials and methods

Morphological characters (Table 1) were identified, using a compound microscope (Alphabot 2; Nikon, Tokyo, Japan), from 118 male and 115 female slide-mounted specimens of Austrogoniodes and Nesiotinus borrowed from various museum collections (Appendix 1). The specimens included both sexes except for A. keleri, because no females of A. keleri have been identified. A single female of A. brevipes was examined because it was the only specimen known and no males have been collected (R. Palma, personal communication).

It should be noted that we obtained several specimens of N. demersus from king penguins on Macquarie Island (part of the Australian sub-antarctic region) and there are also several individuals of N. demersus that were collected from king penguins on Macquarie Island in the collection of the Museum of New Zealand. The suggestion in Harrison (1937) that N. demersus may not occur in the Antarctic or Australian sub-antarctic regions because the Australasian Antarctic Expedition 1911-1912 failed to collect N. demersus from king penguins is not correct.

Louse taxonomy followed Hopkins and Clay (1953), Clay (1967) and Banks and Palma (2003). We considered the louse species A. strutheus Harrison, 1915 as nom. dub. following the discussion in Clay (1967). Morphological terminology follows Clay (1967) and many of the morphological characters (Table 1) are illustrated in Figs 1-8.

In general, characters chosen were easily categorised; although, for characters relying on continuous data, such as head shape, we carried out a cluster analysis using the k-means clustering function with Euclidean distances of Systat 9 (Systat Software Inc., Point Richmond, CA, USA) to confirm that the categories chosen were not a result of observer biases. Character states were assigned relative to the putative outgroup, N. demersus.

Characters 46 and 47, male and female abdominal shape, varied within a species and thus could not always be clearly assigned to a character state using the k-means analysis. We coded characters 46 and 47 as $0 / 1$ for those species that could not be assigned clearly to a character state (Table 2). Seven male characters were pooled with female characters because the character states did not vary between the sexes. Although we did not have female specimens of A. keleri or male specimens of A. brevipes, we considered it unlikely that they would show variation between the sexes when males and females of the other species of lice did not vary.

Phylogenetic analyses were conducted using PAUP*4.0b10 (Swofford 2002). The branch and bound search option was used and all characters were unordered. Jackknife support was calculated from 100 replicates using PAUP*. Bremer support was calculated using AutoDecay (Eriksson 1998).

The louse phylogeny was then compared visually to a phylogeny estimated for the penguins from a maximum-parsimony analysis of 985 base pairs from the mitochondrial small and large ribosomal subunits (Ritchie 2001).

Results

Examination of adult morphology found 46 parsimonyinformative characters, six constant characters (characters 3, $6,26,28,34$ and 39) and three autapomorphic characters (characters 4, 30 and 47) (Table 2).

Fig. 1. Female Austrogoniodes vanalphenae head. Head characters used in the phylogenetic analysis: con, conus; $d p$, dorsal projection; $d s$, dorsal seta; lm, lateral margin; $m c$, marginal carina; mts, marginal temple seta; pos, post ocular seta; pr.an, pre-antennal node.

Table 1. Characters and observations
(1) Males - first antennal segment: (0) large (first segment > half of entire antenna length); (1) small (first segment < one-third of entire antenna length).
(2) Abdominal segment II curved around base of leg 3: (0) no; (1) yes.
(3) Males - rearward projection on first antennal segment: (0) yes; (1) no.
(4) Females - rearward projection on first antennal segment: (0) no; (1) yes.
(5) Males - conus attenuated: (0) no; (1) yes (Fig. 1).
(6) Females - conus attenuated: (0) no; (1) yes (Fig. 1).
(7) Females - setae on vulval margin: (0) all short (longest seta $<60 \mu \mathrm{~m}$); (1) mixture of short and long (longest seta $>85 \mu \mathrm{~m}$).
(8) Females - hyaline outgrowth from head: (0) absent; (1) present.
(9) Hyaline margin of pre-antennal region: (0) $<2 \mu \mathrm{~m}$; (1) $\geq 2 \mu \mathrm{~m}$ (Fig. 1).
(10) Females - vulval margin: (0) flattened; (1) curved.
(11) Males - hyaline margin of terminal segment: $(0)<1 \mu \mathrm{~m}$ thick; (1) $>1 \mu \mathrm{~m}$ thick.
(12) Males - number of setae on posterior margin of terminal segment: (0) 13-20; (1) 8-12; (2)>20.
(13) Females - marginal temple seta 4: (0$)>90 \mu \mathrm{~m}$; (1) $<45 \mu \mathrm{~m}$ (Fig. 1).
(14) Males - marginal temple seta 4: (0) $>90 \mu \mathrm{~m}$; (1) $<70 \mu \mathrm{~m}$ (Fig. 1).
(15) Marginal temple seta 2: (0) shorter than marginal temple seta 3; (1) marginal temple seta 2 longer than marginal temple seta 3 ($<50 \mu \mathrm{~m}$: $<20 \mu \mathrm{~m}$); (2) marginal temple seta 2 much longer than temple seta $3(\geq 60 \mu \mathrm{~m}: \leq 10 \mu \mathrm{~m})$ (Fig. 1).
(16) Females - lateral setae on terga II-VII: (0) all short and spine-like; (1) mixture of long and short (at least one seta is ~ 10 times the length of the short setae).
(17) Males - lateral setae on terga II-VII: (0) all short and spine-like; (1) mixture of long and short (at least one seta is ~ 10 times the length of the short setae).
(18) Males - internal abdominal thickening: (0) absent; (1) not bifurcated; (2) bifurcated.
(19) Females - projection on anterior side of pteronotum: (0) no (Fig. 4b); (1) yes (Fig. 4a).
(20) Males - parameres: (0) tip of paramere blunt (Fig. 6); (1) tip of paramere bifurcate (Fig. 8a); (2) paramere bifurcate with one arm turned out (Fig. 8b).
(21) Males - setae on posterior margin: (0) all long (shortest setae $>24 \mu \mathrm{~m}$); (1) mixture of short and long (shortest setae $<17 \mu \mathrm{~m}$).
(22) Males - genitalia with two medianly fused bladder-like lobes anterior to penis: (0) no; (1) yes (Fig. 6).
(23) Females - setae on posterior margin of tergum VIII: (0) short and long (shortest $<37 \mu \mathrm{~m}$; character state); (1) medium and long (shortest $>61 \mu \mathrm{~m})$.
(24) Males - lateral margin of head deeply indented posterior to lens: (0) no (Fig. 1); (1) yes.
(25) Males - third antennal segment: (0) with tooth; (1) without tooth.
(26) Females - third antennal segment: (0) without tooth; (1) with tooth.
(27) Males - antennae: (0) end rounded; (1) end with flattened facet anteriorly.
(28) Females - antennae: (0) end rounded; (1) end with flattened facet anteriorly.
(29) Males - posterior margin of pre-antennal node: (0) symmetrical (Fig. 2); (1) asymmetrical (Fig. 1).
(30) Females - posterior margin of pre-antennal node: (0) symmetrical (Fig. 2); (1) asymmetrical (Fig. 1).
(31) Males - anterior margin of head: (0) convex; (1) strongly convex.

The distance between the temples divided by the distance from the anterior margin of the head to a line between the temples was calculated for each specimen. The ratios were standardised (mean $=0$, standard deviation $=1$) and grouped using k means clustering with Euclidean distance. Character states were assigned based on the results of the cluster analysis.
(32) Females - anterior margin of head: (0) strongly convex; (1) convex.

Categorised as for character 31.
(33) Males - setae on antennal segment II: (0) long (>42 $\mu \mathrm{m}$); (1) absent or short ($<17 \mu \mathrm{~m}$).
(34) Females - setae on antennal segment II: (0) short; (1) long.

All were $<19 \mu \mathrm{~m}$.
(35) Females - spermathecal sclerite: (0) angular shape, fine dentation present (Fig. 3e); (1) u-shaped (Fig. 3a); (2) u-shaped but with 'arms' reduced and base markedly thickened (Fig. 3b); (3) inverted u-shape (Fig. 3c); (4) discrete, angular shape (Fig. 3d); (5) not visible.
(36) Females - lateral pouches: (0) absent; (1) present.

See Figs 31 and 47 of Clay and Moreby (1967) for a description.
(37) Dorsal projection on posterior margin of head capsule: (0) median side orientated obliquely to anterior-posterior axis (Fig. 5); (1) median side parallel to anterior-posterior axis (Fig. 1).
(38) Males - length of setae on dorsal surface of head plate: (0) long (>17 $\mu \mathrm{m}$); (1) short ($<12 \mu \mathrm{~m}$) (Fig. 1).
(39) Females - length of setae on dorsal surface of head plate: (0) short ($<12 \mu \mathrm{~m}$) (Fig. 1); (1) long (>24 $\mu \mathrm{m}$).
(40) Males - number of setae on posterior margin of tergum VIII: (0) >21; (1) 13-20.
(41) Males - length of setae on posterior margin of tergum VIII: (0) all medium and long (shortest seta $>54 \mu \mathrm{~m}$); (1) some short, medium and long (shortest seta $<32 \mu \mathrm{~m}$).
(42) Males - penis morphology: (0) mid point is extended laterally (Fig. 7a); (1) long and straight (Fig. 7b); (2) flanges on the side of the penis (Fig. 7c); (3) short (<39 $\mu \mathrm{m}$), not pointed (Fig. 7d); (4) short ($<39 \mu \mathrm{~m}$) and pointed (Fig. 7e).

Table 1. (continued)
(43) Length of pre-antennal node: (0) short (ratio < 0.078); (1) long (ratio >0.084).

The ratio of pre-antennal node length divided by total louse length was calculated for each specimen. Ratios were standardised (mean $=0$, standard deviation $=1$) and grouped using k means clustering with Euclidean distances. Character states were assigned based on the results of the cluster analysis.
(44) Females - internal abdominal thickening: (0) absent; (1) not bifurcate; (2) bifurcate.
(45) Males - endomeres with curved ends: (0) yes; (1) no.
(40) Males - abdomen: (0) rounded (ratio of width to length > 1.00); (1) elongated (ratio of width to length <0.93).

The ratio of maximum length to maximum width of the abdomen was calculated for each specimen. Ratios were standardised (mean $=0$, standard deviation $=1$) and grouped using k means clustering with Euclidean distances. Character states were assigned based on the results of the cluster analysis.
(47) Females - abdomen: (0) rounded (ratio of width to length >0.953); (1) elongated (ratio of width to length <0.872). Analysed as for character 46.
(48) Males - number of setae on abdominal sternum III: $(0)>11 ;(1)<10$.
(49) Females - spermathecal sclerite: (0) spermathecal tube opens in sclerite; (1) spermathecal tube opens outside of the sclerite; (2) opening not visible.
(50) Females - number of setae on abdominal sternum III: (0) <11; (1) >11.
(51) Females - seta on terminal segment: (0) short ($<44 \mu \mathrm{~m}$); (1) long ($>78 \mu \mathrm{~m}$).
(52) Length of lateral setae on abdominal segment III: (0) all short ($<15 \mu \mathrm{~m}$, males; $<20 \mu \mathrm{~m}$, females); (1) medium and long (longer than approximately190 $\mu \mathrm{m}$).
(53) Length of lateral setae on abdominal segment II: (0) short (approx $10 \mu \mathrm{~m}$); (1) long ($\sim 34 \mu \mathrm{~m}$, males; $\sim 26 \mu \mathrm{~m}$, females).
(54) Posterior projection on fore coxa of leg I : (0) absent; (1) rounded; (2) spine-like.
(55) Endomeral plate with fine dentation: (0) no; (1) yes (Fig. 6).

The branch and bound search, with all characters weighted equally, recovered five most parsimonious trees with a length of 109 steps, a consistency index of 0.566 (excluding uninformative characters) and retention index of 0.739 (Fig. 9). The g_{1} statistic of 1000 random trees was $-0.6509(P<0.001)$, indicating the data contained strong cladistic signal (Huelsenbeck 1991). The dataset and the five maximum-parsimony trees (Fig. 9) have been deposited in TreeBASE (Accession number S1031; http://www.treebase.org).

Within Austrogoniodes, there was jackknife support (57\%), but little Bremer support (0), for a group consisting of A. bifasciatus, A. cristati, A. demersus and A. vanalphenae

Fig. 2. Pre-antennal node of male Austrogoniodes keleri with symmetrical posterior margin (characters 29 and 30). Compare to the asymmetrical posterior margin of Austrogoniodes vanalphenae preantennal node in Fig. 1.

Fig. 3. Spermathecal sclerites (character 35). (a) Austrogoniodes antarcticus (character state 1); (b) Austrogoniodes vanalphenae (character state 2); (c) Austrogoniodes macquariensis (character state 3); (d) Austrogoniodes mawsoni (character state 4); (e) Nesiotinus demersus (character state 0), note change of scale.

(b)

Fig. 4. Thorax types. Arrow highlights the projection on the anterior of the pteronotum (character 19). (a) Austrogoniodes concii; (b) Austrogoniodes vanalphenae.

Banks \& Palma, 2003. The analysis also indicated that A. bicornutus, A. concii, A. hamiltoni, A. keleri and A. macquariensis formed another morphologically similar group with strong jackknife (82%) and Bremer (5) support. There was also strong jackknife (90\%) and Bremer (3) support for placing A. brevipes and A. mawsoni parasitising the sister-species king penguin, Aptenodytes patagonicus, and emperor penguin, A. forsteri G. R. Gray, 1844 as sister-taxa. Moderately strong jackknife (63\%) and Bremer (3) support was also found for the basal position of A. metoecus (Fig. 10).

Discussion

Many previous studies of the systematics of chewing lice have either examined an incomplete selection of lice from closely related groups of hosts, or consisted only of species descriptions (Smith 2000). In this study, we examined all louse species parasitising penguins. The penguin lice presented a rare opportunity to examine the chewing lice of a complete, widely dispersed host order that ranges around the

Fig. 5. Austrogoniodes antarcticus head showing oblique median margin of the dorsal projection on the posterior edge of the head (character 37 ; arrow highlights the oblique margin, compare to Fig. 1).
southern hemisphere from the equator to latitude $78^{\circ} \mathrm{S}$, below the Antarctic circle (del Hoyo et al. 1992).

The louse phylogeny derived from morphological characters was relatively well resolved and whereas support for the recent branches of the phylogeny was strong, the jackknife analysis showed weak support for the deeper nodes in the phylogeny. The absence of strong phylogenetic signal in the deeper branches might be a result of morphological convergence. Morphological convergence may be more likely in the penguin lice than in other groups of bird-chewing lice because penguin louse species share similar habitats and face similar selection pressures owing to similarities in the morphology and marine lifestyle of their host species.

Division of the genus Austrogoniodes has been proposed in the past. Harrison (1937) stated that A. mawsoni and A. hamiltoni differed morphologically from other Austrogoniodes species based on their larger size, broad temporal lobes and indistinct demarcation of the antennary articles. Von Kéler (1952, 1954) thought the differences were

Fig. 6. Austrogoniodes vanalphenae male genitalia, dorsal view. em, Endomere; pm, paramere; em plate, endomeral plate.

Fig. 7. Penis morphology (character 42). (a) Nesiotinus demersus (character state 0); (b) Austrogoniodes keleri (character state 1); (c) Austrogoniodes vanalphenae (character state 2); (d) Austrogoniodes antarcticus (character state 3); (e) Austrogoniodes metoecus (character state 4).
sufficient to warrant the genus Cesareus, containing C. bicornutus, C. concii, C. hamiltoni, C. macquariensis, C. mawsoni and C. waterstoni and based, in part, on characters in Harrison (1937) and the sexual dimorphism of the first antennal segment. Von Kéler $(1952,1954)$ retained A. antarcticus, A. brevipes, A. bifasciatus, A. cristati and A. demersus in Austrogoniodes. Hopkins and Clay (1953) considered all Cesareus spp. to be Austrogoniodes, but

Fig. 8. Paramere morphology (character 20). (a) Austrogoniodes keleri (character state 1); (b) Austrogoniodes bicornutus (character state 2) (see Fig. 6, A. vanalphenae paramere for character state 0).

Cesareus is still used occasionally, for example by Mey et al. (2002). Although our analysis found no support for the genus Cesareus, it could be argued that there is support for an informal 'cesareus-group' within Austrogoniodes if A. brevipes was included in the group. However, jackknife and Bremer support for monophyly of this group is not strong and molecular data (J. C. Banks and A. M. Paterson, unpublished data) also does not support the 'cesareusgroup' as a natural grouping.

A 'concii' clade containing A. bicornutus, A. concii, A. hamiltoni, A. keleri and A. macquariensis was found. The distinctiveness of this group has been recognised in the past by Clay (1967), who wrote of problems in assigning females

Table 2. Character state matrix

| | 1 | 2 | 3 | 4 | 5 | 12345 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Louse species | 1234567890 | 1234567890 | 1234567890 | 1234567890 | 1234567890 | 1201020 |
| A. antarcticus | 1001000010 | 0110100110 | 1000100011 | 1110100101 | $13121--100$ | 010 |
| A. bicornutus | 0001101101 | 0200211112 | 0001001001 | 0100210000 | 0101000021 | 11020 |
| A. bifasciatus | 1001001011 | 1110100100 | 1100100011 | 1110201101 | $121111-021$ | 11020 |
| A. brevipes | $? 1 ? 1 ? 00010$ | $? ? 1 ? 10 ? ? 0 ?$ | $? ? 0 ? ? 0 ? 0 ? 1$ | $? 1 ? 0501 ? 0 ?$ | $? ? 12 ? ? 0 ? ? 0$ | $1111 ?$ |
| A. concii | 0001101101 | 0200211110 | 0011001001 | 0100300000 | 0101000011 | 11020 |
| A. cristati | 1001001101 | 1100100100 | 1100100011 | 1110201101 | $121111-021$ | 01021 |
| A. demersus | 1001001111 | 1110100100 | 1100100011 | 1110201101 | $121111-021$ | 11020 |
| A. gressitti | 1001000000 | 0110100110 | 1000100011 | 1110100101 | $13021-0021$ | 01020 |
| A. hamiltoni | 0001101101 | 0200211112 | 0001001001 | 0100310000 | 0101100021 | 11020 |
| A. keleri | $000 ? 1 ? ? ? 0 ?$ | $02 ? 02 ? 11 ? 1$ | $00 ? 10 ? 1 ? 0 ?$ | $0 ? 0 ? ? ? 00 ? 0$ | $010 ? 1-? 0 ? ?$ | $? 1020$ |
| A. macquariensis | 0001101001 | 0000211111 | 0000100001 | 1100310101 | $01011--021$ | 11020 |
| A. mawsoni | 0101100110 | 0011000200 | 1001100011 | 1100401101 | 1112100120 | 11110 |
| A. metoecus | 1001000000 | 0111110000 | 0010100011 | 1010500101 | 0400111000 | 00000 |
| A. vanalphenae | 1001001111 | 1110100100 | 1100100011 | 1110200101 | $121111-021$ | 01021 |
| A. waterstoni | 0001101111 | 1010100100 | 1101100011 | 1100501101 | $13111--001$ | 01020 |
| N. demersus | 0000000000 | 0000000000 | 0000000000 | 0000000000 | 0000000000 | $? 0000$ |

[^0]to males in this same species-group. The 'concii-group' was defined by two morphological characters: marginal temple seta 2 much longer than marginal temple seta 3 (character 15); and the short spine-like lateral setae on terga II-VII (characters 16 and 17). Jackknife (82%) and Bremer values (5) indicated considerable support for the subdivision. Clay (1967) discussed a second group comprising A. bifasciatus, A. cristati and A. demersus, which was also found in the current analysis and included the newly described species A. vanalphenae (Banks and Palma 2003). The 'cristaticlade' was united by similarities in male genitalia, although this group had less jackknife support (57%) than the 'conciigroup' and had little Bremer support (0). It is interesting to note that individual hosts can be parasitised by members of both the 'cristati-' and 'concii-clades', for example, the crested penguins, Eudyptes Vieillot, 1816 spp., and it seems possible that the two clades occupy different niches on the hosts.

Our analysis found that A. metoecus, parasitic on the musk duck, Biziura lobata, was basal in the phylogeny. Clay (1971) suggested that A. metoecus might have affinities with the 'cristati-group', but this was not supported in our analysis.

Clay (1971) speculated that the establishment of A. metoecus on the musk duck was likely from a relatively recent establishment on the musk duck (i.e. host switching). The present geographical distribution of the musk duck suggested blue penguins, Eudyptula minor, as the most likely source of the musk duck louse and thus the louse should be most closely related to A. waterstoni. Our analysis did not find a close relationship between A. metoecus and A. waterstoni. Clay (1971) also noted that a relatively ancient host switch may have established the A. metoecus lineage on the musk duck and that adaptation to its new host, combined with extinction of the species ancestral to A. metoecus parasitising the penguin, may have obscured the origins of A. metoecus. One avenue may have been via the

Fig. 9. The five most parsimonious trees obtained from the 46 parsimony-informative characters.
extinct New Zealand musk duck, Biziura delautouri Forbes, 1892 (Worthy 2002), and thus A. metoecus could have originated from one of several penguin species.

Alternatively, it may be that A. metoecus has been incorrectly classified in Austrogoniodes. One of the diagnostic features of Austrogoniodes is the extension to the fore coxa of leg I (Clay 1967), but in both sexes of A. metoecus the extension of the fore coxa is absent. Also, A. metoecus does not have tergites with internal thickening, unlike all other Austrogoniodes, and the male genitalia are distinctly different from other Austrogoniodes. Despite these differences, Clay (1971) included A. metoecus in Austrogoniodes, but it may be that the morphological similarities between A. metoecus and other Austrogoniodes lice are a result of similarities in the aquatic lifestyle of musk ducks and penguins. Another possibility may be that rapid adaptation to the relatively novel conditions on musk ducks has resulted in a spuriously basal position for A. metoecus in the

Fig. 10. Strict consensus of the five most parsimonious trees estimated from 46 parsimony-informative morphological characters. Numbers in bold above branches are Bremer support values and numbers below branches are jackknife values $>50 \%$ (of 100 replicates).
phylogeny. Molecular data would be one method to test these possibilities.

A superficial examination of the penguin-louse associations (see Appendix 2) revealed some areas of congruence between the louse and penguin phylogenies (Fig. 11). For example, the closely related A. brevipes and A. mawsoni exclusively parasitise the sister-species king penguin, Aptenodytes patagonicus, and emperor penguin, A. forsteri, respectively. Likewise the sister-louse species A. vanalphenae and A. cristati parasitise the sister-genera Megadyptes Milne-Edwards, 1880 and Eudyptes and the closely related A. demersus and A. bifasciatus only parasitise penguin species of the genus Spheniscus Brisson, 1760. However, a more rigorous analysis of co-phylogeny is warranted, because host-parasite relationships in the penguin-louse assemblage are complicated (for example, A. macquariensis and A. hamiltoni are present on some but not all of the crested penguins) and the most complete penguin phylogeny currently available is poorly resolved (Ritchie 2001).

Generally, homologous morphological characters were relatively obvious, despite N. demersus being distinctly morphologically different to the Austrogoniodes lice. Of the 55 characters used in this study, only character 51, the homologous seta on the terminal segment of female Austrogoniodes, could not be found in N. demersus. The position of N. demersus and Austrogoniodes within Ischnocera is beyond the scope of this study; although, given the morphological differences between Nesiotinus and Austrogoniodes, we are confident the two genera are sufficiently morphologically distinct to retain the present generic classification. Deeper relationships within Ischnocera are problematic (Cruickshank et al. 2001), which made the choice of an outgroup difficult. However, it is unlikely that N. demersus falls within the Austrogoniodes genus given the marked morphological differences between the two genera.

Male and female abdomen shape (characters 46 and 47) was included in the phylogenetic analysis, despite the cluster analysis failing to separate some species clearly into either of two groups. Species with ambiguous character states were assigned the code $0 / 1$. It is possible that the difficulty in separating the character states was caused by distortion of the specimens during mounting of the specimens. Characters that encompass several body segments are more likely to be distorted during treatment of the specimen before mounting and/or by the weight of the cover glass (R. Palma, personal communication). Female characters for A. keleri were scored as '?' in our analysis because no female specimens of this species have been described. Use of '?' for unknown character states has been used successfully to analyse hypothetical datasets (Platnick et al. 1991; Maddison and Maddison 1992; Maddison 1993). Ordering character 20, paramere morphology, using Dollo ordering, did not alter the groups within Austrogoniodes, although it

Fig. 11. Tanglegram of louse-penguin associations. The louse phylogeny is one of the five most parsimonious trees generated from morphology (this study); the penguin phylogeny was generated by maximum parsimony from 985 base pairs from the mitochondrial small ribosomal subunit and large ribosomal subunit (branches of the penguin phylogeny with less than 50% bootstrap support have been collapsed) (Ritchie 2001). Blue penguins have been split into the New Zealand and Australian haplotypes following the discussion in Banks et al. (2002). Lines connecting hosts and lice indicate associations.
altered the arrangement of the taxa within the 'concii-group' to (A. macquariensis (A. concii, A. keleri (A. hamiltoni, A. bicornutus))) in the 50% majority-rule tree.

Although we found some support for the 'cristati-group' and strong support for the 'concii-group' and 'cristatigroups' (Clay 1967) within Austrogoniodes, our cladistic analysis of louse morphology found little support for the use of the genus Cesareus. The basal position of A. metoecus suggests that if a host-switching event between the penguin and musk duck lineages has occurred, the transfer between the hosts was an ancient one. A visual comparison of louse and penguin phylogenies indicated that there might be some instances of co-divergence (Fig. 11) and a quantitative analysis, using molecular and morphological data, will be conducted elsewhere.

Acknowledgments

We are grateful to Ricardo Palma for advice on the drawings and stimulating discussion relevant to this paper. Comments from Vince Smith and an anonymous reviewer improved this paper. Thanks to Museum of New Zealand/Te Papa Tongarewa, British Museum of Natural History and the K.C. Emerson Entomology Museum for providing specimens. This work was supported by a Lincoln University doctoral scholarship and a Kelly Tarlton's Antarctica Scholarship.

References

Banks, J. C., and Palma, R. L. (2003). A new species and new host records of Austrogoniodes (Insecta: Phthiraptera: Philopteridae) from penguins (Aves: Sphenisciformes). New Zealand Journal of Zoology 30, 69-75.
Banks, J. C., Mitchell, A. D., Waas, J. R., and Paterson, A. M. (2002). An unexpected pattern of molecular divergence within the blue penguin (Eudyptula minor) complex. Notornis 49, 29-38.
Clay, T. (1967). Mallophaga (biting lice) and Anoplura (sucking lice). Part 1: Austrogoniodes (Mallophaga) parasitic on penguins (Sphenisciformes). In 'Entomology of Antarctica. Antarctic Research Series Vol. 10’. (Ed. J. L. Gressitt.) pp. 149-156. (American Geophysical Union of the National Academy of Sciences National Research Council: Washington, DC, USA.)
Clay, T. (1971). A new species of Austrogoniodes (Phthiraptera: Philopteridae) from a duck (Anseriformes). Journal of the Australian Entomological Society 10, 293-298.
Clay, T., and Moreby, C. (1967). Mallophaga (biting lice) and Anoplura (sucking lice). Part II: keys and locality lists of Mallophaga and Anoplura. In 'Entomology of Antarctica. Antarctic Research Series Vol. 10'. (Ed. J. L. Gressitt.) pp. 157-195. (American Geophysical Union of the National Academy of Sciences - National Research Council: Washington, DC, USA.)
Clayton, D. H., Price, R. D., and Page, R. D. M. (1996). Revision of Dennyus (Collodennyus) lice (Phthiraptera: Menoponidae) from swiftlets, with descriptions of new taxa and a comparison of hostparasite relationships. Systematic Entomology 21, 179-204. doi:10.1046/J.1365-3113.1996.D01-13.X

Cruickshank, R., Johnson, K., Smith, V., Adams, R., Clayton, D., and Page, R. (2001). Phylogenetic analysis of partial sequences of elongation factor 1 alpha identifies major groups of lice (Insecta: Phthiraptera). Molecular Phylogenetics and Evolution 19, 202-215. doi:10.1006/MPEV.2001.0928
del Hoyo, J., Elliot, A., and Sargatal, J. (1992). 'Handbook of the Birds of the World Volume I, Ostrich to Ducks.' (Lynx Edicions: Barcelona, Spain.)
Eriksson, T. (1998). 'AutoDecay ver. 4.0.' (Program distributed by the author: Department of Botany, Stockholm University, Sweden. Available from http://www.bergianska.se/index_forskning_soft.html)
Harrison, L. (1915). On a new family and five new genera of Mallophaga. Parasitology 7, 383-407.
Harrison, L. (1937). Mallophaga and Siphunculata. Australasian Antarctic Expedition 1911-1914. Under the leadership of Sir Douglas Mawson, O.B.E., B.E., D.Sc., F.R.S. Australasian Antarctic Expedition Scientific Reports Series C. Zoology and Botany 2, 5-47.
Hopkins, G. H. E., and Clay, T. (1953). Additions and corrections to the checklist of Mallophaga. The Annals and Magazine of Natural History 12, 434-448.
Huelsenbeck, J. P. (1991). Tree-length distribution skewness: an indicator of phylogenetic information. Systematic Zoology 40, 257-270.
Maddison, W. P. (1993). Missing data versus missing characters in phylogenetic analysis. Systematic Biology 42, 576-581.
Maddison, W. P., and Maddison, D. R. (1992). 'MacClade: Analysis of Phylogeny and Character Evolution.' (Sinauer Associates, Inc.: Sunderland, MA, USA. Available from http://macclade.org/ macclade.html)
Mey, E., Chastel, O., and Beaucournu, J. C. (2002). A "penguin" chewing louse Nesiotinus on a Kerguelen diving petrel (Pelecanoides urinatrix exsul): an indication of phylogenetic relationship? Journal fur Ornithologie 143, 472-476. doi:10.1046/J.14390361.2002.02043.X

Page, R. D. M., Price, R. D., and Hellenthal, R. A. (1995). Phylogeny of Geomydoecus and Thomomydoecus pocket gopher lice (Phthiraptera: Trichodectidae) inferred from cladistic analysis of adult and first instar morphology. Systematic Entomology 20, 129-143.

Palma, R. L. (1996). Philopteridae. In 'Zoological Catalogue of Australia. Vol. 26. Psocoptera, Phthiraptera, Thysanoptera’. (Ed. A. Wells.) pp. 149-230. (CSIRO Publishing: Melbourne, Australia.)
Palma, R. L. (1999). Amendments and additions to the 1982 list of chewing lice (Insecta: Phthiraptera) from birds in New Zealand. Notornis 46, 373-387.
Pilgrim, R. L. C., and Palma, R. L. (1982). A list of the chewing lice (Insecta: Mallophaga) from birds in New Zealand. Notornis 29(Supplement), 1-32.
Platnick, N. I., Griswold, C. E., and Coddington, J. A. (1991). On missing entries in cladistic analysis. Cladistics 7, 337-343.
Ritchie, P. A. (2001). 'The Evolution of the Mitochondrial DNA Control region in the Adelie Penguins of Antarctica.' PhD Thesis. (Massey University: Palmerston North, New Zealand.)
Smith, V. S. (2000). Basal ischnoceran louse phylogeny (Phthiraptera: Ischnocera: Goniodidae and Heptapsogasteridae). Systematic Entomology 25, 73-94. doi:10.1046/J.1365-3113.2000.00095.X
Smith, V. S. (2001). Avian louse phylogeny (Phthiraptera: Ischnocera): a cladistic study based on morphology. Zoological Journal of the Linnean Society 132, 81-144. doi:10.1006/ZJLS.2000.0264
Swofford, D. L. (2002). 'PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods).' (Sinauer Associates, Inc.: Sunderland, MA, USA. Available from http://paup.csit.fsu.edu/)
von Kéler, S. (1952). On some Mallophaga of sea-birds from the Tristan Da Cunha group and the Dyer Island. The Journal of the Entomological Society of Southern Africa XV, 218-238.
von Kéler, S. (1954). The Mallophaga from Eudyptes chrysolophus (Brandt) and E. cristatus (Miller). The Proceedings of the Royal Entomological Society of London Series B 23, 49-59.
Watson, K. C. (1967). The terrestrial arthropoda of Macquarie Island. III. Parasites of mammals and birds. ANARE Scientific Reports, Series B (I). Zoology 99, 70-76.
Worthy, T. H. (2002). The New Zealand musk duck (Biziura delautouri Forbes 1892). Notornis 49, 19-28.

Manuscript received 30 June 2003; revised and accepted 5 December 2003.

Appendix 1. Material examined

Species	Host	Collection locality	Latitude	Longitude	Lice examined
Austrogoniodes antarcticus	Pygoscelis adeliae	Cape Bird	$77.17^{\circ} \mathrm{S}$	$166.83^{\circ} \mathrm{W}$	3 ot and 3 ¢ (MONZ)
Austrogoniodes bicornutus	Eudyptes chrysolophus	Heard Is.	$53.10^{\circ} \mathrm{S}$	$73.50{ }^{\circ} \mathrm{E}$	$2 \delta^{\text {a }}$ and 5 ¢ ${ }^{\text {p (}}$ (BMNH)
Austrogoniodes bifasciatus	Spheniscus magellanicus	Isla Hornos	$55.95^{\circ} \mathrm{S}$	$67.28^{\circ} \mathrm{W}$	$2 \delta^{\text {o }}$ and 2 ¢ (MONZ)
	Spheniscus sp.	Not recorded			$2 \delta^{\text {o }}$ and 2 ¢ (MONZ)
Austrogoniodes brevipes	Aptenodytes patagonicus	Kerguelen Is.	$49.25^{\circ} \mathrm{S}$	$69.17^{\circ} \mathrm{E}$	$1 \dagger^{1}(\mathrm{BMNH})$
Austrogoniodes concii	Eudyptes sclateri	Christchurch	$43.53{ }^{\circ} \mathrm{S}$	$172.67^{\circ} \mathrm{E}$	$1 \delta^{+}$and $1+($ PONZ $)$
		Kaikoura	$42.43{ }^{\circ} \mathrm{S}$	$173.70^{\circ} \mathrm{E}$	1 ठ and 1 ¢ (MONZ)
		Antipodes Is.	$49.67^{\circ} \mathrm{S}$	$178.77^{\circ} \mathrm{E}$	1 ठ and 1 ¢ (MONZ)
	Eudyptes pachyrhynchus	Barrytown	$42.25^{\circ} \mathrm{S}$	$171.33^{\circ} \mathrm{E}$	$1 \delta^{\text {c }}$ and $1+($ PONZ $)$
		Thompson Sound	$45.15^{\circ} \mathrm{S}$	$166.95{ }^{\circ} \mathrm{E}$	$1 \delta^{\circ}$ and 19 (MONZ)
		Jackson Bay	$43.97{ }^{\circ} \mathrm{S}$	$168.70^{\circ} \mathrm{E}$	$1 \delta^{\circ}$ and 1 ¢ (MONZ)
	Eudyptes robustus	Snares Is.	$48.04{ }^{\circ} \mathrm{S}$	$166.56^{\circ} \mathrm{E}$	$3 \delta^{\text {o }}$ and 3 ¢ (MONZ)
	Megadyptes antipodes	Christchurch	$43.53{ }^{\circ} \mathrm{S}$	$172.67^{\circ} \mathrm{E}$	$1 \delta^{\text {c }}$ and 19 (MONZ)
		Kaikoura	$42.43{ }^{\circ} \mathrm{S}$	$173.70^{\circ} \mathrm{E}$	$1 \delta^{\dagger}$ and $1+($ MONZ $)$
		Petone Beach	$41.22^{\circ} \mathrm{S}$	$174.87^{\circ} \mathrm{E}$	$1 \delta^{\dagger}$ and 1 ¢ (MONZ)
Austrogoniodes cristati	Eudyptes chrysocome chrysocome	Falkland Is.	$51.75^{\circ} \mathrm{S}$	$59.42^{\circ} \mathrm{W}$	5 ठ and 6 ¢ (MONZ)
	Eudyptes chrysocome filholi	Campbell Is.	$52.50{ }^{\circ} \mathrm{S}$	$169.08^{\circ} \mathrm{E}$	3 ot and 3 ¢ (MONZ)
	Eudyptes chrysolophus	Marion Is.	$46.90^{\circ} \mathrm{S}$	$37.75^{\circ} \mathrm{E}$	$1 \delta^{\text {a }}$ and $1+($ MONZ $)$
	Eudyptes pachyrhynchus	Jackson Bay	$43.97^{\circ} \mathrm{S}$	$168.70^{\circ} \mathrm{E}$	3 ठ and 3 ¢ (MONZ)
	Eudyptes robustus	Snares Is.	$48.04{ }^{\circ} \mathrm{S}$	$166.56^{\circ} \mathrm{E}$	3 ó and $3 ¢($ MONZ $)$
	Eudyptes sclateri	Antipodes Is.	$49.67^{\circ} \mathrm{S}$	$178.77^{\circ} \mathrm{E}$	$1 \delta^{\text {c }}$ and $1+($ MONZ $)$
		Christchurch	$43.53{ }^{\circ} \mathrm{S}$	$172.67^{\circ} \mathrm{E}$	$1 \delta^{\text {c }}$ and 19 (MONZ)
		Napier	$39.47^{\circ} \mathrm{S}$	$176.92^{\circ} \mathrm{E}$	$1 \delta^{+}$and 1 ¢ (MONZ)
Austrogoniodes demersus	Spheniscus demersus	Dassen Is.	$33.43^{\circ} \mathrm{S}$	$18.08^{\circ} \mathrm{E}$	$2 \delta^{\text {o }}$ and 2 ¢ (MONZ)
		Dyer Is.	$34.67^{\circ} \mathrm{S}$	$19.43{ }^{\circ} \mathrm{E}$	$2 \delta^{\text {o }}$ and 2 ¢ (MONZ)
	Spheniscus mendiculus	Bahia Elizabeth	$0.60{ }^{\circ} \mathrm{S}$	$91.20^{\circ} \mathrm{W}$	$3 \delta^{\text {o }}$ and 3 ¢ (MONZ)
Austrogoniodes gressitti	Pygoscelis antarctica	South Georgia Is.	$54.25^{\circ} \mathrm{S}$	$36.75^{\circ} \mathrm{W}$	1 ठ̊ (BMNH)
		Not recorded			$1 \dagger^{p}(\mathrm{BMNH})$
	Pygoscelis papua	Bird Is.	$54.00^{\circ} \mathrm{S}$	$38.06^{\circ} \mathrm{W}$	$2 \delta^{\text {o }}$ and $1+$ (BMNH)
	Pygoscelis sp.	Anvers Is.	$64.77^{\circ} \mathrm{S}$	$64.08^{\circ} \mathrm{E}$	$1 \delta^{\text {a }}$ and $1+$ (BMNH)
Austrogoniodes hamiltoni	Eudyptes chrysocome filholi	Macquarie Is.	$54.62{ }^{\circ} \mathrm{S}$	$158.93{ }^{\circ} \mathrm{E}$	4 ¢ and 4 ठ (BMNH)
		Antipodes Is.	$49.67^{\circ} \mathrm{S}$	$178.77^{\circ} \mathrm{E}$	1 ¢ (BMNH)
		Campbell Is.	$52.50{ }^{\circ} \mathrm{S}$	$169.08^{\circ} \mathrm{E}$	3 ¢ (MONZ)
	Eudyptes schlegeli	Macquarie Is.	$54.62{ }^{\circ} \mathrm{S}$	$158.93{ }^{\circ} \mathrm{E}$	5 ¢ (BMNH)
		Tasmania	$41.88^{\circ} \mathrm{S}$	$148.29^{\circ} \mathrm{E}$	$1 \delta^{\text {c }}$ and 2 ¢ (MONZ)
Austrogoniodes keleri	Eudyptes chrysocome chrysocome	Falkland Is.	$51.75^{\circ} \mathrm{S}$	$59.42^{\circ} \mathrm{W}$	6 ¢ (MONZ)
Austrogoniodes macquariensis	Eudyptes chrysocome chrysocome	Isla Gonzalo	$56.53{ }^{\circ} \mathrm{S}$	$68.73{ }^{\circ} \mathrm{W}$	4 ¢ (MONZ)
		Isla Buena Ventura	$50.75^{\circ} \mathrm{S}$	$75.13{ }^{\circ} \mathrm{W}$	1 ¢ (MONZ)
		Falkland Is.	$51.75^{\circ} \mathrm{S}$	$59.42^{\circ} \mathrm{W}$	$6 \delta^{\text {t }}$ and 8 ¢ (MONZ)
	Eudyptes chrysocome filholi	Campbell Is.	$52.50^{\circ} \mathrm{S}$	$169.08^{\circ} \mathrm{E}$	6 ơ (MONZ)
	Eudyptes chrysolophus	Snares Is.	$48.04{ }^{\circ} \mathrm{S}$	$166.55^{\circ} \mathrm{E}$	2 ơ (MONZ)
		Isla Gonzalo	$56.53{ }^{\circ} \mathrm{S}$	$68.73{ }^{\circ} \mathrm{W}$	$1 \delta^{+}$and 2 ¢ (MONZ)
	Eudyptes schlegeli	Green Gorge, Macquarie Is.	$54.62{ }^{\circ} \mathrm{S}$	$158.93{ }^{\circ} \mathrm{E}$	2 ơ (MONZ)
Austrogoniodes mawsoni	Aptenodytes forsteri	Cape Bird	$77.17^{\circ} \mathrm{S}$	$166.83^{\circ} \mathrm{W}$	3 ठ and 3 ¢ (MONZ)
Austrogoniodes metoecus	Biziura lobata	New South Wales	Not recorded		$1 \delta^{\hat{c}}$ and 1 ¢ (MONZ)
		Perth	$31.95^{\circ} \mathrm{S}$	$115.97^{\circ} \mathrm{E}$	$1 \delta^{\text {a }}$ and $1 q^{p}$ (KCE)
Austrogoniodes vanalphenae	Megadyptes antipodes	Kaikoura	$42.43{ }^{\circ} \mathrm{S}$	$173.70^{\circ} \mathrm{E}$	2 ठ and 1 ¢ (MONZ)
		Otaki Beach	$40.75^{\circ} \mathrm{S}$	$175.12^{\circ} \mathrm{E}$	$3 \delta^{\text {o }}$ and 3 ¢ (MONZ)
		St Clair Beach	$45.92{ }^{\circ} \mathrm{S}$	$170.48^{\circ} \mathrm{E}$	1 ठ and 1 ¢ (MONZ)
Austrogoniodes waterstoni	Eudyptula minor albosignata	Kaikoura	$42.43{ }^{\circ} \mathrm{S}$	$173.70^{\circ} \mathrm{E}$	$1 \delta^{\dagger}$ and 1 ¢ (MONZ)
		Banks Peninsula	$43.75^{\circ} \mathrm{S}$	$173.00^{\circ} \mathrm{E}$	$1 \delta^{\text {a }}$ and $1+($ PONZ $)$
		Waimakariri	$43.38^{\circ} \mathrm{S}$	$172.67^{\circ} \mathrm{E}$	1 ठ and 1 ¢ (MONZ)
	E. m. chathamensis	Long Beach, Chatham Is.	$44.00^{\circ} \mathrm{S}$	$176.50^{\circ} \mathrm{W}$	$2 \delta^{\text {o }}$ and 2 ¢ (MONZ)
		Rangatira, Chatham Is.	$44.35^{\circ} \mathrm{S}$	$176.17^{\circ} \mathrm{W}$	1 ठ and 1 ¢ (MONZ)
	E. m. iredalei	Ohope Beach	$37.96{ }^{\circ} \mathrm{S}$	$177.03^{\circ} \mathrm{E}$	3 ठ and 3 ¢ (MONZ)
	E. m. minor	Snares Is.	$48.04{ }^{\circ} \mathrm{S}$	$166.55^{\circ} \mathrm{E}$	$2 \delta^{\text {o }}$ and 2 ¢ (MONZ)
		Stewart Is.	$47.00^{\circ} \mathrm{S}$	$168.25^{\circ} \mathrm{E}$	1 ठ and 1 ¢ (MONZ)
	E. m. novaehollandiae	Phillip Is.	$38.48^{\circ} \mathrm{S}$	$145.23{ }^{\circ} \mathrm{E}$	$1 \delta^{t}$ and 19 (MONZ)
		Millicent	$37.60{ }^{\circ} \mathrm{S}$	$140.35^{\circ} \mathrm{E}$	$1 \delta^{+}$and 2 ¢ (MONZ)
		King Is., Tasmania	$39.92^{\circ} \mathrm{S}$	$144.00^{\circ} \mathrm{E}$	1 ठ and 1 ¢ (MONZ)
	E. m. variabilis	Eastbourne	$41.28^{\circ} \mathrm{S}$	$174.90^{\circ} \mathrm{E}$	$1 \delta^{\text {a }}$ and $1+($ MONZ $)$
		Kaikoura	$42.43{ }^{\circ} \mathrm{S}$	$173.70^{\circ} \mathrm{E}$	1 ठ and 1 ¢ (MONZ)
		New Plymouth	$39.07^{\circ} \mathrm{S}$	$174.08^{\circ} \mathrm{E}$	$1 \delta^{+}$and 1 ¢ (MONZ)
Nesiotinus demersus	Aptenodytes patagonicus	St Andrew Bay, Sth Georgia Is.	$54.43{ }^{\circ} \mathrm{S}$	$36.17^{\circ} \mathrm{W}$	3 ó and $2 ¢$ (MONZ)
		Lusiliana Bay, Macquarie Is.	$54.62{ }^{\circ} \mathrm{S}$	$158.93^{\circ} \mathrm{E}$	2 ¢ (MONZ)
		Green Gorge, Macquarie Is.	$54.62^{\circ} \mathrm{S}$	$158.93{ }^{\circ} \mathrm{E}$	$1 \delta^{\text {c }}$ and $1+(\mathrm{l}$

$\mathrm{MONZ}=$ Museum of New Zealand/Te Papa Tongarewa collection, BMNH = British Museum of Natural History, KCE $=\mathrm{K} . \mathrm{C}$. Emerson Collection, ${ }^{1}=$ lectotype, ${ }^{\mathrm{P}}=$ paratype.

Appendix 2. Louse-penguin associations

Austrogoniodes strutheus is regarded as nomen dubium following the discussion in Clay (1967). Louse-host associations that are likely due to straggling are enclosed in brackets

Louse species
Austrogoniodes antarcticus Harrison, 1937
Austrogoniodes bicornutus (von Kéler, 19
Austrogoniodes bifasciatus (Piaget, 1885)
Austrogoniodes brevipes (Giebel, 1876)
Austrogoniodes concii (von Kéler, 1952)

Austrogoniodes cristati von Kéler, 1952

Austrogoniodes demersus (von Kéler, 1952)

Austrogoniodes gressitti Clay, 1967

Austrogoniodes hamiltoni Harrison, 1937

Austrogoniodes keleri Clay, 1967

Austrogoniodes macquariensis Harrison, 1937

Austrogoniodes mawsoni Harrison, 1937
Austrogoniodes metoecus Clay, 1971
(Austrogoniodes strutheus nom. dub.)
Austrogoniodes vanalphenae Banks \& Palma, 2003
Austrogoniodes waterstoni (Cummings, 1914)

Nesiotinus demersus Kellogg, 1903

Host species	
$\left.\begin{array}{l}\text { Pygoscelis adeliae Adelie penguin }{ }^{1,2} \\ \text { Eudyptes chrysolophus macaroni penguin }{ }^{1} \\ \text { Spheniscus magellanicus Magellanic penguin }{ }^{1} \\ \text { Spheniscus humboldti Humboldt penguin }{ }^{11} \\ \text { (Pygoscelis adeliae Adelie penguin }{ }^{1,13} \text {) } \\ \text { Aptenodytes patagonicus king penguin }{ }^{1} \\ \text { Eudyptes chrysocome moseleyi Moseley's rockhopper penguin }{ }^{1} \\ \text { Eudyptes pachyrhynchus Fiordland crested penguin }{ }^{1,2} \\ \text { Eudyptes robustus Snares crested penguin }{ }^{2} \\ \text { Eudyptes sclateri erect-crested penguin }{ }^{1,2} \\ \text { Megadyptes antipodes yellow eyed penguin }{ }^{2} \\ \text { (Eudyptes chrysolophus macaroni penguin }{ }^{1,4} \text {) } \\ \text { Eudyptes chrysocome chrysocome western rockhopper penguin }{ }^{7} \\ \text { Eudyptes chrysocome filholi eastern rockhopper penguin }{ }^{2} \\ \text { Eudyptes chrysocome moseleyi Moseley's rockhopper penguin }{ }^{7} \\ \text { Eudyptes chrysolophus macaroni penguin }{ }^{1,2} \\ \text { Eudyptes pachyrhynchus Fiordland crested penguin }{ }^{2} \\ \text { Eudyptes robustus Snares crested penguin }{ }^{2} \\ \text { Eudyptes sclateri } \text { erect-crested penguin }{ }^{1,2} \\ \text { Eudyptes schlegeli royal penguin }{ }^{1,2} \\ \text { Spheniscus demersus African penguin }{ }^{1} \\ \text { Spheniscus mendiculus Galapagos penguin }{ }^{11} \\ \text { (Eudyptes chrysocome rockhopper penguin }{ }^{1,4,5} \text {) } \\ \text { (Eudyptes chrysolophus macaroni penguin }{ }^{1,4,5} \text {) } \\ \text { (Spheniscus magellanicus magellanic penguin } 1,5,13\end{array}\right)$	

Pygoscelis adeliae Adelie penguin ${ }^{1,2}$
Eudyptes chrysolophus macaroni penguin ${ }^{1}$
Spheniscus magellanicus Magellanic penguin ${ }^{1}$
Spheniscus humboldti Humboldt penguin ${ }^{11}$
(Pygoscelis adeliae Adelie penguin ${ }^{1,13}$)
Aptenodytes patagonicus king penguin ${ }^{1}$
Eudyptes chrysocome moseleyi Moseley's rockhopper penguin ${ }^{1}$
uin ${ }^{1,2}$
Eudyptes robustus Snares crested penguin ${ }^{2}$
udyptes sclateri erect-crested penguin
roni penguin ${ }^{1,4}$)
Eudyptes chrysocome chrysocome western rockhopper penguin ${ }^{7}$
Eudyptes chrysocome filholi eastern rockhopper penguin ${ }^{2}$
Eudyptes chrysocome moseleyi Moseley's rockhopper penguin

Eudyptes pachyrhynchus Fiordland crested penguin ${ }^{2}$
Eudyptes robustus Snares crested penguin ${ }^{2}$
Eudyptes sclateri erect-crested penguin ${ }^{1,2}$
Eudyptes schlegeli royal penguin ${ }^{1,2}$
pheniscus demersus African penguin

Spheniscus mendiculus Galapagos penguin
(Eudyptes chrysocome rockhopper penguin ,
(Spheniscus magellanicus magellanic penguin ${ }^{1,5,13}$)
Pygoscelis antarctica chinstrap penguin ${ }^{1}$
Pygoscelis papua gentoo penguin ${ }^{1}$
(Eudyptes chrysolophus macaroni penguin ${ }^{4}$)
Eudyptes schlegeli royal penguin ${ }^{2}$
(Eudyptes pachyrhynchus Fiordland crested penguin ${ }^{1,6}$)
(Eudyptes robustus Snares crested penguin ${ }^{9,6}$)
(Eudyptes sclateri erect-crested penguin (one female louse) ${ }^{1,8}$)
Eudyptes chrysocome chrysocome western rockhopper penguin ${ }^{1}$
(Eudyptes chrysolophus macaroni penguin one male louse) ${ }^{1}$
(Pygoscelis papua gentoo penguin ${ }^{1,5,13}$)
Eudyptes chrysocome chrysocome western rockhopper penguin ${ }^{7}$
Eudyptes chrysocome filholi eastern rockhopper penguin ${ }^{7}$
Eudyptes chrysolophus macaroni penguin ${ }^{1,2}$
Eudyptes schlegeli royal penguin ${ }^{2}$
(Eudyptes pachyrhynchus Fiordland crested penguin ${ }^{1,6}$)
(Eudyptes robustus Snares crested penguin 9 ,6)
(Pygoscelis antarctica chinstrap penguin ${ }^{1,5,13}$)
(Pygoscelis papua gentoo penguin ${ }^{1,5,13}$)
Aptenodytes forsteri emperor penguin ${ }^{1,2}$
Biziura lobata musk duck ${ }^{10}$
Eudyptes schlegeli royal penguin ${ }^{1,2}$
Eudyptes sclateri erect-crested penguin ${ }^{1}$
Megadyptes antipodes yellow eyed penguin ${ }^{11}$
Eudyptula minor albosignata white flippered penguin ${ }^{1,2}$
Eudyptula minor chathamensis Chatham Is. blue penguin ${ }^{2}$
Eudyptula minor iredalei northern blue penguin ${ }^{2}$
Eudyptula minor novaehollandiae fairy penguin ${ }^{12}$
Eudyptula minor variabilis Cook Strait blue penguin ${ }^{2}$
Aptenodytes patagonicus king penguin ${ }^{2}$

[^1]
[^0]: Character state '-' for characters 46 and 47 indicate the failure of the cluster analysis to consign the data collected from specimens to a single character state within a species and were assigned the character state $0 / 1$. Character state '?' designates missing information.

[^1]: ${ }^{1}$ Clay (1967); ${ }^{2}$ Pilgrim and Palma (1982); ${ }^{3}$ Palma (1999); ${ }^{4}$ Possibly present due to straggling or contamination (Clay 1967); ${ }^{5}$ Specimens obtained only from zoo penguins (Clay 1967); ${ }^{6}$ Possibly a straggler, contamination or misidentified (Pilgrim and Palma 1982); ${ }^{7} \mathrm{R}$. Palma, personal communication; ${ }^{8}$ Possibly a straggler or contamination (Palma 1999); ${ }^{9}$ Watson (1967); ${ }^{10} \mathrm{Clay}$ (1971); ${ }^{11}$ Banks and Palma (2003); ${ }^{12}$ Palma (1996); ${ }^{13}$ Probably a straggler or contamination, R. Palma, personal communication.

