See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228701470

Drowning on arrival, missing the boat, and x-events: how likely are sorting events

Article · January 2003

CITATION	S	READS	
17		193	
3 autho	ors:		
	Adrian Mark Paterson		Ricardo Palma
15	Lincoln University New Zealand	- 6 /	Museum of New Zealand, Te Papa Tongarewa
	132 PUBLICATIONS 2,177 CITATIONS		217 PUBLICATIONS 1,897 CITATIONS
	SEE PROFILE		SEE PROFILE
	Russell D Gray		
C.	Max Planck Institute for the Science of Human History		
	244 PUBLICATIONS 9,706 CITATIONS		
	SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

Project

DPLACE View project

Local Adaptation or Microevolution, that is the Question: How Birds Respond to the Novel Environment. View project

Drowning on arrival, missing the boat and x-events:

How likely are sorting events?

ADRIAN M. PATERSON,¹ RICARDO L. PALMA,² AND RUSSELL D. GRAY³

 ¹Ecology and Entomology Group, Lincoln University, P.O. Box 84, Lincoln, New Zealand PatersoA@Lincoln.ac.nz.
 ²Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand RicardoP@Tepapa.govt.nz
 ³Department of Psychology, University of Auckland Private Bag 92017, Auckland, New Zealand rd.gray@auckland.ac.nz

Reply to:

Adrian Paterson Ecology and Entomology Group, Lincoln University PO Box 84, Lincoln, New Zealand Phone (64)(3)325 2811, Fax (64)(3)325 3844, email: <u>PatersoA@Lincoln.ac.nz</u>

One of the major goals of coevolution studies is to infer the chronicle of events that has determined the present distribution of parasites on their hosts. The reconstruction of such events is made complex by the choice of phylogenetic model (either implicit or explicit) and underlying assumptions needed for this inference. Adding further complexity are the various events that constitute coevolution; cospeciation, sorting, host switching, and intrahost speciation (duplication) events (Page, 1994; Paterson and Gray, 1997, Paterson et al., 1999) (see Fig. 1a-d). Cospeciation events occur when host and parasite species co-diverge. For example, the isolation of a host population will often result in the isolation of the parasite population and their subsequent speciation. Sorting events occur when parasite species are entirely removed from host species. Host switching events occur when a parasite species colonises a host species other than its current host. Intrahost speciation occur when a parasite lineage diverges without the stimulus of host speciation and results in multiple closely related species on the descendant host lineage. There is also a fifth kind of event which simply is the absence of the other events. Parasite 'inertia' will result in the same species of parasite being present on several descendant hosts (Fig. 1e). Parasite inertia implies that although the hosts are isolated from other host populations, the parasite populations on the hosts are not. Here we will argue that increasing attention should be paid to the biological likelihood of sorting events. We will demonstrate that sorting events do occur and that they are not an artefact of small sample sizes.

Several methods have been developed to make inferences about coevolutionary history using various combinations of the above coevolutionary events (see Paterson and Gray, 1997, for a review). Early methods simply compared host and parasite trees or classifications by eye to assess their congruence, and thus infer cospeciation. Brooks (1981) termed this a narrative approach. More recently, the extent of cospeciation in host-parasite systems has been examined quantitatively using Brooks parsimony analysis (Brooks, 1981) and reconciliation analysis. Page (1990a, 1990b, 1993, 1994, 1996) has developed a method that reconstructs cospeciation, intrahost speciation, sorting and suspected host switching events from phylogenetic trees of parasites and their hosts. This method, termed reconciliation analysis, postulates the minimal numbers of intrahost speciation and sorting events needed to reconcile incongruent host and parasite trees without postulating host switching. TreeMap (Page, 1994) is a modification to reconciliation analysis that allows host switching to be addressed in a systematic manner.

TreeMap is an important advance in the cospeciation field. This method uses a host tree (Fig 2a) and a, usually incongruent, parasite tree (Fig 2b) together with the parasite distribution (Fig 2a) to make specific predictions about how these groups have coevolved. There are many scenarios which would reconcile the host and parasite trees given various combinations of the different coevolving events. Early reconciliation analyses (eg Paterson et al, 1993) used the assumption that no host switching had occurred (Fig 2c) while TreeMap now examines all possible combinations with a view to maximising cospeciation events (Fig 2d-e). Resource tracking models generally assume that parasite species are free to host switch to available host taxa (Fig 2e). More recently the program Jungle (see Page and Charleston, 1998) has allowed the differential weighting of all events.

If all coevolutionary events are accorded equal likelihood or weighting then it could be argued that those scenarios that postulate fewer events are more parsimonious. This would imply that the Figures 2e and 2f are more parsimonious than figures 2c and 2d. It is clear, however, that the different events are not equally likely but, rather, relate directly to parasite ecology. For example, fleas are highly mobile and we would expect host switching to occur more often than cospeciation. The only precise method to use in order to discriminate between the various scenarios are molecular data that are evolving in a clock-like fashion (Hafner and Page, 1995; Page et al., 1998; Paterson et al, 2000). For example, the louse genus Saedmundssonia is found on the charadriform (gulls) and procellariform (petrels) bird orders but not on the closely related sphenisciforms (penguins) and pelecaniforms (cormorants). There are two scenarios to test (Fig 3). The first scenario postulates that Saedmundssonia colonised the petrels from the gulls and the second scenario postulates that the penguins and the cormorants have lost the genus. These two scenarios imply different levels of genetic divergence between the two Saedmundssonia lineages. If the genus has host switched from the gulls to the petrels then the genetic divergence between them will be less than between that of their hosts. If Saedmunsdssonia has been passed down through the host lineages then the level of divergence between the louse lineages will be at least as great as their hosts. Paterson et al. (2000) showed that the level of genetic divergence between the lice (corrected d = 0.45) was considerably greater than that of their hosts (d = 0.22) which supported the scenario of descent. The same arguments are made for testing cospeciation events (host and parasite relative genetic distances should be similar) and duplication events (parasite relative genetic distances should be at least as large as their hosts).

Sorting events, however, cannot be directly tested. How can one test for a lineage that is not there? There is nothing that can be sequenced. This is doubly unfortunate

as there are often high numbers of sorting events predicted relative to other coevolutionary events in reconciliation analyses. For example, Paterson et al. (2000) in their analysis of seabird and chewing louse cospeciation found 11 sorting events (Fig 4; relative to seven cospeciation events) and Paterson and Poulin (1999), in their analysis of parasitic copepods and teleost fish, found 9 sorting events (Fig. 5; relative to three cospeciation events).

A further complication is that there are three processes that produce the pattern of absence of parasites from their hosts (Fig. 1b). First, parasites may occur in low numbers on the extant host population but have escaped detection by sampling error (Fig. 1b: S1; X-event). Note that sampling error only generates false absence of parasites from hosts and is, therefore, only a pseudosorting event. Second, parasites may have gone extinct from a host lineage after a host speciation event (Fig. 1b: S3; extinction or "drowning on arrival [DOA]"). Third, parasites may have been absent from the host founder population at a speciation event because of the patchy distribution of a parasite throughout the range of the host or some other stochastic event (Fig. 1b: S2; "missed the boat" – [MTB], Paterson and Gray, 1997; Paterson et al., 1999).

To test the idea that sorting events are common in parasite-host coevolution we added to the data obtained by Paterson et al. (1999) and analysed Australasian birdlouse distributions where we could clearly identify a parent-daughter relationship between bird taxa (i.e., a taxon that was clearly derived from another taxon). We divided the records into three groups: human-introduced bird taxa (introduced), bird taxa with a history of repeatedly colonising an island (cosmopolitan) and closely related taxa (such as regional subspecies). Australasia is well placed for such a study as it is relatively isolated, has an unfortunate history of successful human introductions of bird species, and has many offshore islands which have led to host differentiation. We predicted that there would be a reduction in the louse species present on the daughter taxon relative to the parent taxon. A summary of the data is given in Table 1. A further purpose of this study was to extend that of Paterson et al. (1999) by examining the likelihood of x-events.

Sixty five bird taxa were identified as having a parent-daughter connection (Appendix 1 and Paterson et al. 1999) and of these 47 showed a reduction in louse species number. This reduction was significant (one-tailed binomial test, binomial probability = 0.5: P = 0.0002). When partitioned into the three categories, both the introduced and closely-related taxa showed a significant reduction in louse species number (P < 0.0001 and P = 0.0178, respectively), whereas the cosmopolitan species showed no significant decrease (P = 0.945). These results are reflected in the mean decrease in louse species number from parent to daughter taxa (overall : 1.5 ± 1.7 species; introduced : 2.5 ± 2.0 ; closely related taxa : 0.9 ± 0.9 ; cosmopolitan : $0.3 \pm$ 0.5).

A major issue with the interpretation of these data is the degree to which apparent sorting events are really a result of poor sampling effort (x-events). X-events will be of importance if the daughter taxon is usually sampled less well relative to the parent taxon. Is this something that we might expect in our australasian data set? Many of the daughter taxa in this study are found on small oceanic islands that are relatively inaccessible, eg Kermadec storm petrel, Bounty Island shag, Antipodes pipit, while their parent taxa are found on the mainland, eg white-faced storm petrel, Stewart Island shag and New Zealand pipit respectively. Sampling of remote species is often a matter of brief collecting trips or occasional beach-cast specimens. Introduced taxa may be insufficiently sampled for a quite different reason as their ubiquitousness and low priority for research result in them being little studied. An additional problem is that we are only interested in positive hosts, hosts that actually have lice when sampled, because we are not interested in how the lice are distributed but rather if the species are simply present. We may sample 100 individuals from a species and find that only one host has lice. In this situation there would be a positive host sample size of one.

In order to determine whether x-events were a problem in our data we examined louse species collected from 136 New Zealand bird taxa that are held in the Museum of New Zealand Te Papa Tongarewa collection. We collected data on the number of positive individuals sampled for each host taxon and the number of louse species found on that host taxon (Appendix 2). If x-events are common in our data we would expect to see a strong positive relationship between louse species number and host sample size, that is that the more hosts searched, the greater the chance of finding louse species that are present on a host taxon. A linear regression of the data showed that there was significant positive relationship (P = 0.001) but that it explained very little of the variation observed ($r^2 = 0.078$, Fig 6). It is likely that much of this signal is generated by those host taxa with only a few individuals sampled. This was confirmed by cumulatively excluding hosts by sample size and repeating the regression, eg excluding those hosts that had only been sampled once, then those that had only been sampled once or twice and so on. This analysis (Fig 7) showed that hosts that had more than five individuals sampled, and certainly hosts that had more than seven samples, no longer showed a significant relationship between sample effort and finding louse species. What does this say about x-events in our data? Most of our samples have greater than four samples and even for those that may have had less, there is only a small chance that a louse species will be missed.

In order to examine the generality of our finding we analysed a data set of louse presence on host species collected by one of us (RLP) in the Galapagos islands in 1992. Forty seven of the island group's 58 bird species were examined and numbers of hosts sampled, positive hosts and louse species found were recorded (Appendix 3). A linear regression of positive host versus louse species number showed no significant relationship (P = 0.915, $r^2 < 0.001$, Fig 8). Sampling more hosts did not equate to finding more louse species. This result agrees with the New Zealand data by showing that x-events are unlikely to be common explanations for sorting events. It appears that, in general, our identified sorting events are likely to be real. This should not be a surprise given that the distribution of parasites is patchy (Rekasi et al., 1997), and the size of host populations in speciation events are small (e.g., a small founder population).

Given that the majority of sorting events identified in our data are real, is it possible to determine which of MTB or DOA plays a greater role? The two types of sorting events predict very different affects of founding events on parasite diversity. The most important factor for DOA in reducing parasite diversity, eg louse species extinction, is time since a founding event as the likelihood of a species going extinct will increase with time. The most important factor for MTB in reducing parasite diversity is the founding event itself. The likelihood of a species going extinct will not increase with time. On examining the louse species reduction data, the human-introduced data should provide a good test. These species have been through the greatest bottleneck event (most populations were established from only a few to a hundred individuals) but have had only about a hundred years since founding. We would predict under a DOA scenario that there will have been few sorting events in this time whereas a MTB scenario would predict large numbers of sorting events. Human-introduced hosts lost 2.4 louse species per event, whereas closely related host species, which probably better reflects the usual situation, lost about one louse species per founding event. This seems to support the idea that MTB events are important determinants of louse species diversity in daughter host taxa.

Is it possible to generalise from the louse and bird species of Australasia and the Galapagos to louse and birds (or even parasites and hosts) in general? Sorting events may be much more frequent in these areas due to high levels of isolation between islands. These conditions make the opportunities for continuing contact between founding and parent populations rare. In a continental area it may be more difficult to achieve these levels of isolation. Individuals may periodically continue to arrive in the founding population, sometimes carrying louse species that were lost after the initial founding. The cosmopolitan species that we see in the Australasian data set may illustrate this point. These species showed virtually no reduction in louse species diversity. Cosmopolitan bird species appear to have the ability to repeatedly colonise isolated island groups, that is individuals periodically arrive carrying louse species that have been lost from the founding population. A future test of this idea would be in

examining a continental bird-louse fauna in the same detail as we have done here. We would predict much lower levels of sorting events.

A further impediment to generalising further to other parasite taxa may be that lice are ideally suited to experiencing sorting events. The distribution of lice is patchy. Fowler and Price (1987) found that the distribution of the louse *Philoceanus robertsi* over a population of Wilson's Storm Petrel (*Oceanites oceanicus*) was shown to fit a negative binomial curve. This agrees with our own and other observations about the patchiness of lice on birds. Given a patchy distribution of lice on their host species then a large founding group of hosts would be required before it was likely that all louse species were present in the new population. The numbers of hosts needed to qualify as a 'large' founding group will vary with such host traits as body mass (Rozsa, 1997: larger body masses carry more lice) and coloniality (Rekasi et al., 1997: territorial species show greater variation in louse distributions). It may be that other parasite species with different life histories would be less susceptible to sorting events.

Reconciliation approaches to measuring host-parasite coevolution typically infer many sorting events. We believe that, far from representing a problem with the reconciliation approach or worldview, this reflects a more realistic view of the relative probabilities of the processes involved in host-parasite coevolution. Sorting events have the potential to be very informative about the historical ecological processes that have occurred in a particular host-parasite relationship. Most importantly, these studies will go beyond the mere chronicling of coevolutionary patterns to the testing of hypotheses about the origin of these patterns. There are several directions in which future studies of sorting events might move. First, such studies may examine whether parasite population structure underlies the likelihood of sorting events, e.g. is population distribution more uniform on hosts with fewer sorting events? Second, it may be determined whether ecological and life history parameters of both host and parasite reflect the likelihood of sorting events occurring, e.g. are sorting events related to the number of niches present on the host? Third, studies may address the hypothesis that hosts are islands, e.g. are sorting events determined by island biogeographical theory? Fourth, and most definitely not finally, studies may reveal how real the distinction between the two forms of sorting events (MTB and DOA) is and whether it a useful to have this distinction? We look forward to sorting out these and other questions.

ACKNOWLEDGMENTS

We thank Jonathan Banks, Fiona Jordan and Richard Duncan for useful comments that improved the manuscript. This work was funded by a University of Auckland Research Grant (R.D.G.) and a Lincoln University New Developments Grant (A.M.P.).

REFERENCES

- BROOKS, D. R. 1981. Hennig's parasitological method: A proposed solution. Syst. Zool. 30:229--249.
- BROOKS, D. R. 1996. Explanations of homoplasy at different levels of biological organisation. Pages 3--34 in Homoplasy: The recurrence of similarity in evolution (M.J. Sanderson and L. Hufford eds.). Academic Press, San Diego.

- BROOKS, D. R., AND R. T. O'GRADY. 1989. Crocodilians and their helminth parasites: Macroevolutionary considerations Amr. Zool. 29:873--883.
- BROWN, N. S., AND G. I. WILSON. 1975. A comparison of the ectoparasites of the house sparrow (*Passer domesticus*) from North America and Europe. Am. Midl. Nat. 94:154--165.
- FELSENSTEIN, J. 1997. An alternating least squares approach to inferring phylogenies from pairwise distances. Syst. Biol. 46:101--111.
- FOWLER, J. A. AND R. A. PRICE. 1987. A comparative study of the ischnoceran mallophaga of Wilson's Petrel *Oceanites oceanicus* and British Storm Petrel *Hydrobates pelagicus*. Seabird 10:43--49.
- HAFNER, M. S. AND R. D. M. PAGE. 1995. Molecular phylogenies and host parasite cospeciation: gophers and lice as a model system. Phil. Trans. R. Soc. Lond. B 349:77--83.
- HOBERG, E., D. R. BROOKS, AND D. SIEGEL-CAUSEY. 1997. Host-parasite co-speciation: History, principles, and prospects. Pages 212--235 *in* Host-parasite evolution: General principles and avian models (D. H. Clayton and J. Moore eds.), Oxford Univ. Press, Oxford, England.
- HUELSENBECK, J. P., D. M. HILLIS, AND R. NIELSEN. 1996. A likelihood-ratio test of monophyly. Syst. Biol. 45:546--558.
- KIM, J. 1996. General inconsistency conditions for maximum parsimony: Effects of branch lengths and increasing numbers of taxa. Syst. Biol. 45:363--374.
- PAGE, R. D. M. 1990a. Component analysis: A valiant failure? Cladistics 6:119-136.
- PAGE, R. D. M. 1990b. Temporal congruence and cladistic analysis of biogeography and cospeciation. Syst. Zool. 39:205--226.

- PAGE, R. D. M. 1993. Genes, organisms, and areas: The problem of multiple lineages. Syst. Zool. 42:77--84.
- PAGE, R. D. M. 1994. Parallel phylogenies: Reconstructing the history of hostparasite assemblages. Cladistics 10:155--173.
- PAGE, R. D. M. 1996. Temporal congruence revisited: Comparison of mitochondrial DNA sequence divergence in cospeciating pocket gophers and their chewing lice. Syst. Biol. 45:151--167.
- PAGE, R. D. M. AND CHARLESTON, M. A. (1998). Trees within trees: Phylogeny and historical associations. Trends Ecol. Evol. 13:356-359.
- PAGE, R. D. M., P. L. M. LEE, S. A. BECHER, R. GRIFFITHS, AND D. H. CLAYTON. 1998. A different tempo of mitochondrial DNA evolution in birds and their parasitic lice. Mol. Phylogenet. Evol. 9:276--293.
- PATERSON, A. M., AND R. D. GRAY. 1997. Host-parasite co-speciation, host switching and missing the boat. Pages 236--250 *in* Host-parasite evolution:
 General principles and avian models (D. H. Clayton D. H. and J. Moore), Oxford Univ. Press, Oxford, England.
- PATERSON, A. M., R. D. GRAY, AND G. P. WALLIS. 1993. Parasites, petrels and penguins: Does louse phylogeny reflect seabird phylogeny? Int. J. Parasitol. 23:515--526.
- PATERSON, A. M., R. L. Palma, AND R. D. GRAY. 1999. How frequently do avian lice miss the boat? Implications for coevolutionary studies. Syst. Biol. 48:214-223.
- PATERSON, A. M., G. P. WALLIS, L. J. WALLIS, AND R. D. GRAY. 2000. Seabird and louse coevolution: Complex histories revealed by sequence data and reconciliation analyses. Syst. Biol. 49:.

- PENNY, D., M. D. HENDY, P. J. LOCKHART, AND M. A. STEEL. 1996. Corrected parsimony, minimum evolution and hadamard conjugations. Syst. Biol. 45:596--606.
- PILGRIM, R. L. C., AND R. L. PALMA. 1982. A list of the chewing lice (Insecta: Mallophaga) from birds in New Zealand. Notornis 29(suppl.):1--32.
- REKASI, J., L. ROZSA, AND B. J. KISS. 1997. Patterns in the distribution of avian lice (Phthiraptera: Amblycera, Ischnocera). J. Avian Biol. 28:150--156.
- ROZSA, L. 1997. Patterns in the abundance of avian lice (Phthiraptera: Amblycera,

Ischnocera). J. Avian Biol. 28:249--254.

Table 1. Australasian examples of parent-daughter host taxa and the status of their louse species. Same = no change in louse species composition, reduced = fewer louse species on the daughter bird taxon relative to its parent taxon.

H	Iuman introduced	Cosmopolitan	Closely related
Same	3	7	8
Reduced	24	3	20

Figure 1. The five different types of coevolutionary events inferred in reconciliation analysis. Each figure shows a phylogeny of three host taxa (shaded line) with a parasite lineage (line) mapped upon it. (a) Cospeciation events ('C'): the parasite taxa speciate or co-diverge at the same point as their host. (b) Sorting events ('S'): parasite taxa are lost from their host lineage. There are three types of sorting events: S1 – the parasite taxa are present but have not been detected (x-events); S2 – the parasite taxa were not present on the founding host population (MTB – 'missing the boat'); S3 – the parasite taxa have gone extinct on a host lineage (DOA – 'drowning on arrival'). (c) Host switching events ('H'): a parasite taxon has colonised the host taxon from a different host lineage and then successively colonised the host's close relatives. (d) Duplication event ('D'): the parasite taxon has produced multiple parasite lineages on the host's descendants. (e) Inertia ('I'): the absence of the other events where the parasite taxon does not speciate resulting in the same species being present on multiple hosts.

Figure 2. (a) The phylogeny for a group of hosts A-D and the distribution of the parasites 1-4 over these hosts. (b) The phylogeny for the parasites 1-4. Reconciliation analysis provides many different scenarios for reconciling these trees. (c) This reconciliation assumes no host switching. The lines of different widths refer to the two different lineages descending from the duplication event. (d) This reconciliation allows one host switching event. Note that the host switching event makes a prediction that the host clade (C,D) is older than the host clade (A,B). (e) This reconciliation allows two host switching events. (f) This reconciliation only allows host switching events.

Figure 3. Two possible scenarios (or reconciliations) for explaining the presence of *Saedmundssonia* lice on gulls and petrels and its absence from penguins and cormorants. (a) *Saedmundssonia* has colonised the petrels from the gulls. (b) *Saedmundssonia* has passed down the lineage from a common ancestor of gulls and petrels. The hypothesised louse phylogeny (dark lines) are mapped onto the known host phylogeny (shaded line).

Figure 4. A reconciliation tree for the coevolution of seabirds and chewing lice (after Paterson et al. 2000 Fig. 5b). The louse phylogeny (italicised taxon names and dark lines – the varying width of lines reflects lineages derived from duplication events) are mapped onto the known host phylogeny (bold names and shaded line). This reconciliation hypothesises 11 sorting, 9 cospeciation, 1 host switching and 3 duplication events.

Figure 5. A reconciliation tree for the coevolution of teleost fish and *Chondracanthus* parasitic copepods (after Paterson and Poulin, 1999 Fig. 2f). The copepod phylogeny (dark lines – the varying width of lines reflects lineages derived from duplication events) are mapped onto the known host phylogeny (bold taxon names and shaded line). This reconciliation hypothesises 9 sorting, 3 cospeciation, 1 host switching, 2 inertia and 3 duplication events.

Figure 6. The positive relationship (P = 0.001, $r^2 = 0.078$) between host sample size and numbers of louse species found for 136 New Zealand bird taxa.

Figure 7. The effect of cumulatively excluding host taxa by sample size on the significance of the relationship between host sample size and louse species number for 136 New Zealand bird taxa. There is a significant positive relationship from host species that have been sampled for lice from 1, 2 or 3 individuals. There is no significant relationship after hosts with more than three individuals samples are included. The host species sample size remaining is shown next to each bar.

Figure 8. The nonsignificant relationship (P = 0.915, $r^2 < 0.001$) between host sample size and numbers of louse species found for 47 Galapagos Islands bird taxa.

(C)

(e)

Fig. 1

Fig. 2

Saedmundsssonia Petrels

Penguins

Cormorants

Saedmundssonia Gulls

Fig. 3

Fig. 5

host sample size

Fig. 6

Fig. 8

Appendix 1. Louse records for 17 Australian bird parent-daughter taxa (after Palma and Barker, 1996).

Parent taxa	Daughter taxa
Human introduced	
Mute Swan (Cygnus olor Gmelin, 1789)	
Anatoecus icterodes oloris Zlotorzycka, 1970	Anatoecus icterodes oloris
	Anatoecus dentatus magnicornutus Zlotorzycka, 1970
Anatoecus penicillatus Keler, 1960	
Ciconiphilus cygni Price & Beer, 1965	
Ornithobius bucephalus (Giebel, 1874)	Ornithobius bucephalus
Trinoton anserinum cygni Eichler, 1943	
Mallard Duck (Anas platyrhynchos platyrhynchos Linn	aeus, 1758)
Anaticola crassicornis (Scopoli, 1763)	Anaticola crassicornis
Anatoecus dentatus (Scopoli, 1763)	Anatoecus dentatus
Anatoecus icterodes (Nitzsch, 1818)	Anatoecus icterodes
Holomenopon leucoxanthum (Burmeister, 1838)	Holomenopon leucoxanthum
Holomenopon maxbeieri Eichler, 1954	
Trinoton querquedulae (Linnaeus, 1758)	Trinoton querquedulae
Ring-necked Pheasant (Phasianus colchicus Linnaeus, 1	758)
Amyrsidea perdicis (Denny, 1842)	
Goniocotes chrysocephalus Giebel, 1874	
Goniodes colchici Denny, 1842	Goniodes colchici
Lagopoecus colchicus Emerson, 1949	
Lipeurus maculosus maculosus Clay, 1938	
Menacanthus phasiani (Modrzejewska &	
Zlotorzycka, 1977)	
Oxylipeurus mesopelios colchicus Clay, 1938	
	Lipeurus caponis (Linnaeus, 1758)
Peafowl (Pavo cristatus Linnaeus, 1758)	
Amyrsidea minuta Emerson, 1961	Amyrsidea minuta
Amyrsidea phaeostoma (Nitzsch (in Giebel), 1866)	
Colpocephalum tausi (Ansari, 1951)	
Goniocotes parviceps (Piaget, 1880)	
Goniocotes rectangulatus Nitzsch (in Giebel), 1866	
Goniocotes mayuri Lakshminarayana & Emerson, 1971	
Goniodes meinertzhageni Clay, 1940	
Goniodes pavonis (Linnaeus, 1778)	Goniodes pavonis
Lipeurus pavo Clay, 1938	
Wild Turkey (Meleagris gallopavo Gray, 1843)	
Chelopistes meleagridis (Linnaeus, 1758)	Chelopistes meleagridis

Oxylipeurus polytrapezius polytrapezius Oxylipeurus polytrapezius	
(Burmeister, 1838) polytrapezius	
Rock Pigeon (<i>Columba livia</i> Gmelin, 1789)	
Bonomiella columbae Emerson, 1957	
Campanulotes bidentatus compar (Burmeister, 1838) Campanulotes bidentatus compar	
Coloceras aegypticum (Kellogg & Paine, 1911)	
Coloceras damicorne (Nitzsch, 1866)	
Colpocephalum turbinatum Denny, 1842 Colpocephalum turbinatum	
Columbicola columbae columbae (Linnaeus, 1758) Columbicola columbae columbae	
Hohorstiella lata (Piaget, 1880) Hohorstiella lata	
Song Thrush (Turdus philomelos Brehm, 1831)	
Brueelia merulensis (Denny, 1842)	
Brueelia turdinulae Ansari, 1956	
Menacanthus eurysternus (Burmeister, 1838)	
Myrsidea iliaci Eichler, 1951	
Philopterus turdi (Denny,1842) Philopterus turdi	
Ricinus elongatus (Olfers, 1816)	
Sturnidoecus melodicus Eichler, 1951	
Common Blackbird (Turdus merula Linnaeus, 1758)	
Brueelia amsel (Eichler, 1951)	
Brueelia merulensis (Denny, 1842)	
Brueelia oudhensis Ansari, 1956	
Menacanthus eurysternus (Burmeister, 1838) Menacanthus eurysternus	
Myrsidea thoracica (Giebel, 1874)	
Philopterus turdi (Denny, 1842) Philopterus turdi	
Ricinus elongatus (Olfers, 1816)	
European Starling (Sturnus vulgaris (Linnaeus, 1758))	
Brueelia nebulosa (Burmeister, 1838) Brueelia nebulosa	
Menacanthus eurysternus (Burmeister, 1838) Menacanthus eurysternus	
Myrsidea cucullaris (Nitzsch, 1818)	
Sturnidoecus sturni (Schrank, 1776) Sturnidoecus sturni	
Closely related	
Little Penguin (Eudyptula minor minorFairy Penguin (Eudyptula minor novaehollandiae (Stephens, 18)	(26)
(Forster, 1781))	
Austrogoniodes waterstoni (Cummings, 1914) Austrogoniodes waterstoni	
Brown Quail (Synoicus ypsilophorus ypsilophorus Brown Quail (Synoicus ypsilophorus australis (Latham, 1801)	
Bosc, 1792)	
Cuclotogaster synoicus (Clay, 1938) Cuclotogaster synoicus	
Goniodes retractus Le Souef, 1902 Goniodes retractus	

Australian Bush-Turkey (Alectura lathami	(Alectura lathami purpureicollis Le Souf, 1898))
lathami Gray, 1831)	
Colpocephalum alecturae Price and Beer, 1964	Colpocephalum alecturae
Colpocephalum lathami Price and Beer, 1964	Colpocephalum lathami
Goniodes fissus (Rudow, 1869)	Goniodes fissus
Oxylipeurus ischnocephalus (Taschenberg, 1882)	Oxylipeurus ischnocephalus
Scrub Fowl (Megapodius reinwardt tumulus (Megapo	dius reinwardt yorki Mathews, 1929)
Gould, 1842)	
Goniodes biordinatus Clay, 1940	
Goniodes minor (Piaget, 1880)	Goniodes minor
Lipeurus sinuatus Taschenberg, 1882	Lipeurus sinuatus
Brown Goshawk (Accipiter fasciatus fasciatus	(Accipiter fasciatus didimus (Mathews, 1912))
(Vigors & Horsfield, 1827))	
Degeeriella fulva (Giebel, 1874)	
Degeeriella fusca (Denny, 1842)	Degeeriella fusca
Brown Goshawk (Accipiter fasciatus fasciatus	(Accipiter fasciatus natilis (Lister, 1889))
(Vigors & Horsfield, 1827))	
Degeeriella fulva (Giebel, 1874)	
Degeeriella fusca (Denny, 1842)	Degeeriella fusca
Purple Swamp Hen (Porphyrio porphyrio melanotus	(Porphyrio porphyrio bellus Gould, 1840)
Temminck, 1820)	
Pseudomenopon concretum (Piaget, 1880)	Pseudomenopon concretum
Rallicola lugens (Giebel, 1874)	Rallicola lugens
Common Bronzewing (Phaps chalcoptera	Tasmanian population
(Latham, 1790))	
Campanulotes flavus flavus (Rudow, 1863)	
Coloceras grande Tendeiro, 1973	
Columbicola angustus (Rudow, 1869)	
	Columbicola tasmaniensis Tendeiro, 1967
Physconelloides strangeri Tendeiro, 1980	
	Physconelloides australiensis Tendeiro, 1969

Host species name	Host individuals sampled	Louse species found
Sphenisciformes	-	
Eudyptes chrysocome chrysocome	13	3
Eudyptes chrysocome filholi	5	3
Eudyptes pachyrhynchus	9	2
Eudyptes robustus	19	2
Eudyptes sclateri	7	3
Eudyptula minor	69	1
Megadyptes antipodes	6	2
Podicipediformes		
Podiceps cristatus	2	1
Podiceps rufopectus	1	1
Procellariiformes		
Daption capense	38	4
Diomedea bulleri	30	6
Diomedea cauta cauta	22	6
Diomedea cauta eremita	9	5
Diomedea cauta salvani	14	6
Diomedea chrysostoma	10	6
Diomedea epomophora epomophora	ı 29	6
Diomedea epomophora sandfordi	13	6
Diomedea exulans	31	5
Diomedea melanophris	9	6
Fregretta tropica	5	4
Fulmaris glacialoides	15	4
Garrodia nereis	12	2
Halobaena caerulea	14	5
Lugensa brevirostris	19	5
Macronectes giganteus	30	6
Macronectes halli	10	5
Oceanites oceanicus	1	1
Pachyptila belcheri	20	5
Pachyptila crassirostris	15	4
Pachyptila desolata	13	5
Pachyptila salvini	22	5
Pachyptila turtur	58	5
Pachyptila vittata	37	5
Pagodroma nivea	3	2
Pelagodroma marina	24	4
Pelecanoides urinatrix	55	3
Phoebetria palpebrata	7	5
Procellaria aequinoctialis	10	4
Procellaria cinerea	5	4
Procellaria parkinsoni	13	4

Appendix 2. New Zealand bird taxa sampled for louse species listed by order.

Procellaria westlandica	27	4
Pterodroma auxillaris	3	2
Pterodroma cookii	15	6
Pterodroma externa	10	3
Pterodroma inexpectata	36	6
Pterodroma leucoptera	4	4
Pterodroma longirostris	5	5
Pterodroma macroptera	22	6
Pterodroma magentae	17	6
Pterodroma mollis	12	5
Pterodroma neglecta	6	4
Pterodroma nigripennis	18	4
Pterodroma pycrofti	6	4
Puffinus assimilis elegans	6	3
Puffinus assimilis haurakiensis	3	4
Puffinus assimilis kermadecensis	11	4
Puffinus bulleri	10	4
Puffinus carneipes	5	6
Puffinus gavia	10	3
Puffinus griseus	37	4
Puffinus huttoni	25	5
Puffinus pacificus	8	6
Puffinus tenuirostris	8	4
Thalassoica antarctica	7	4
Pelecaniformes		
Leucocarbo campbelli campbelli	3	1
Leucocarbo campbelli ranfurlyi	2	1
Leucocarbo carunculatus chalconotus	5	2
Leucocarbo carunculatus onslowi	3	1
Pelecanus conspicillatus	1	2
Phalacrocorax melanoleucos brevirostris	13	2
Phalacrocorax sulcirostris	4	2
Phalacrocorax carbo novaehollandiae	10	2
Phalacrocorax varius varius	8	2
Stictocarbo punctatus	25	2
Sula bassana serrator	70	2
Sula dactylatra personata	4	2
Ciconiiformes		
Ardea novaehollandiae	11	2
Botaurus stellari	15	2
Egretta alba	11	2
Anseriformes		
Anas platyrhynchus	30	5
Anas rhynchotis	3	4
Anas superciliosa	21	4
Branta canadensis	20	5

Cygnus atratus	83		7
Cygnus olor	3		2
Tadorna variegata	12		5
Falconiformes			
Circus approximans	34		3
Falco cenchroides	1		3
Falco novaeseelandiae	7		2
Galliformes			
Alectoris chukar	8		3
Meleagris gallopavo	4		3
Pavo cristatus	5		3
Perdix perdix	1		2
Phasianus colchicus	5		6
Synoicus ypsilophorus 2	2		
Gruiformes			
Gallirallus australis australis	16		2
Gallirallus australis scotti	11		1
Porphyrio mantelli	13		1
Porphyrio porphyrio	15		2
Charadriiformes			
Anarhynchus frontalis	8		1
Calidris canutus	5		5
Charadrius bicinctus bicinctus		2	
Charadrius bicinctus exilis	2		2
Charadrius obscurus	28		3
Coenocorvpha aucklandica	9		2
Haematopus chathamensis	14		2
Haematopus ostralegus	20		4
Haematopus unicolor	5		4
Himantopus himantopus leucocephalus	5 7		4
Himantopus novaezealandiae	3		2
Timosa lapponica	13		5
Limosa limosa	15		5
Physialis fulva	3		3
Vanellus miles novaehollandiae	9		3
Columbiformes			
Columba livia	15		5
Hemiphaga novaeseelandiae	21		2
Psittaciformes			
Cyanoramphus auriceps	1		1
Cyanoramphus malherhi	1		1
Cyanoramphus novaeseelandiae	15		1
Cyanoramphus unicolor	3		2
2 jano i di i prino di deceleri	~		-

Nestor meridionalis	9	3
Nestor notabilis	18	4
Strigops habroptilus	3	1
Strigiformes		
Athene noctua	7	1
Ninox novaeseelandiae	17	2
Coraciiformes		
Halycon sancta vagans	14	1
Passeriformes		
Acridotheres tristis	25	2
Anthornis melanura melanura	7	3
Corvus frugilegus	8	1
Gymnorhina tibicen	25	3
Passer domesticus	15	2
Prunella modularis	9	1
Sturnus vulgaris	12	3
Turdus merula	2	5
Turdus philomelos	14	3
Zosterops lateralis	14	1

Host species	total hosts	positive hosts	louse
species			
	sampled	sampled	found
Sphenisciformes			
Sphenicus mendiculus	5	5	1
Procellariiformes			
Diomedea irrorata	4	4	7
Oceanodroma castro	6	6	3
Oceanites gracilis galapagoo 1	ens is	4	4
Pterodroma phaeopygia	2	2	4
Puffinus subalaris	5	5	3
Pelecaniformes			
Fregata magnificans	3	3	3
Fregata minor	3	3	3
Nannopterum harrisi	7	7	1
Pelecanus occidentalis	4	4	2
Phaethon aethereus	3	3	2
Sula dactylatra	5	5	2
Sula nebouxii	10	10	2
Sula sula	5	5	1
Charadriiformes			
Anous stolidus	3	3	4
Arenaria interpres	1	1	2
Creagus furcatus	7	7	3
Haematopus palliatus	3	3	4
Larus fuliginosus	9	5	1
Larus pipixcan	2	2	3
Tringa incana	1	1	3
Ciconiiformes			
Butorides sundevalli	4	2	1
Nyctanassa violacea	5	4	1
Phoenicopterus ruber	3	3	2
Anseriformes			
Anas bahamensis	2	1	4
Falconiformes			
Buteo galapagoensis	3	3	3
Strigiformes			
Asio flammeus	1	1	2

Appendix 3. Galapagos Islands bird taxa sampled for louse species and listed by order.

Gruiformes			
Laterallus spilonotus	4	2	3
Columbiformes			
Zenaida galapagoensis	19	19	2
Passeriformes			
Camarhynchus pallidus	1	1	1
Camarhynchus pauper	6	1	1
Camarhynchus parvulus	1	0	0
Camarhynchus psittacula	12	5	2
Certhidea olivacea	6	0	0
Dendroica petechia	8	6	2
Geospiza conirostris	42	8	2
Geospiza difficilis	47	6	2
Geospiza fortis	46	6	2
Geospiza fuliginosus	86	13	3
Geospiza magnirostris	7	3	2
Geospiza scandens	6	0	0
Myarchus magnirostris	65	16	2
Nesiomimus parvulus	12	11	2
Nesomimus trifasciatus	6	6	1
Nesomimus macdonaldi	18	13	2
Platyspiza crassirostris	5	1	1
Pyrocephalus rubinus	6	2	1