# Evidence for double resistance to permethrin and nalathion in head lice 

A.M.R.DOWNS. K.A.STAFEORD,* I.HARVEY† $\Lambda N D$ G.C.COIBS*<br>

Accepted for publication 28 ^pril 1999

## Summary


#### Abstract

A rising prevalence of head lice among school children and rising sales of insecticides with anecdotal evidence of their treatment failure, led us to examine whether head lice in Bristol and Barth were resistant to the insecticides available for treating head lice. Ten schools in Bristol and Bath were visited to collect ficld samples of head lice. A comparison was made of the survival rates of fully sensitive laboratory reared body lice and field samples of head lice on insecticide exposure. To confirm the in vitro relevance of these tests we performed supervised freatments of affected subjects with malathion or permethrin. There were significant differences ( $P<10^{-6}$ Fishers exact test) between head and body lice survival for malathion and permethrin exposure, but not for carbaryl. There was an $87 \%$ lailure rate for permethrin and a $64 \%$ failure rate for malathion with the topical treatment of a selected number of infested school children. We conclude that there is a high resistance to permethrin and malathion, but head lice remain fully sensitive to carbaryl. This is the lirst report of doubly resistant head lice. As permethrin, phenothrin (a very similar synthetic pyrethroid) or malathion are the active ingredients in all the over-the-counter head lice treatments in the U.K., then it is likely that head lice prevalence will continue to increase. The resistance aganst permethrin employed by the head louse is probably the kdr (knockdown resistance) mechanism, and an enzyme-med'ated malathion-specific esterase is the likely mechanism against matathion.


Key words: head lice, insecticide resistance, organophosphates, synthetic pyrethroids

Sales of insecticides for the treatment of head lice in the UK have risen over the last 10 years, which may rellect both an increased prevalence of head lice and the poor ellicacy of available treatments. The removal of 'nit nurses' and a change to group learning, which encourages head-to-head contact. may have contributed to an increase in infection rates, and with more lice being treated there is a greater risk of resistance developing.

Evidence is gathering that head lice resistance is: occurring. certainly against synthetic pyrethroids ${ }^{1-3}$ and possibly against organophosphates. ${ }^{4}$ All previous in vitro studies have exposed samples of head lice to different concentrations of insecticide for between 16 and 24 h . or exposed the head lice to a single concentration of insecticide and measured the time until cither $50 \%$ or $100^{\frac{\pi}{*}}$ of the sample of insects are dead. The natural mortality of $10 \%$ a day, makes the significance

[^0]of some of these tests difficult to interpret. ${ }^{3.5}$ It is also hard to draw meaningful conclusions where in vitro studies cant only examine the $1 \mathrm{LD}_{50}$ (drug dose achieving $50 \%$ mortality) compared with the $\mathrm{L}_{1} \mathrm{I}_{100}{ }^{3.5}$ With some in vivo trials, there has been a failure to compensate for re-infection of the study patients, as the cause for apparent treatment failure." We evaluated the possibility of head lice insecticide resistance in Bristol and Bath, with in vitro and in vivo experiments using $\mathrm{LD}_{1(\mathcal{O})}$ studies and inspection of treated children before re-inlection was likely.

## Subjects and methods

Insecticide impregnated filter papers were made by dipping standard Whatman type I filter papers into a range of insecticide concentrates as shown in table 1. Body lice were used as a test model for head lice, as both types of lice are Pediculus humamus subspecies. ${ }^{7}$ There are no known laboratory or field strains of susceptible head lice. Fully insecticide sensitive laboratory bred
body lice ${ }^{\text {j }}$ were used to establish an $L_{100}$ for permethrin, malathion and carbaryl and an $\mathrm{LD}_{75}$ for DDT, at 2 h exposure on the impregnated filter papers at $30^{\circ} \mathrm{C}$ and $70 \%$ relative humidity (r.h.)- the oplimum survival conditions for human lice ${ }^{7}$ —based on a World Health Organization method lor determining susceptibility to insecticides. ${ }^{8}$ Death was taken as the absence of all movements or irreversible intoxication (paralysis or continuous tonic-clonic spasm). Control body lice were placed on untreated filter papers. Both freshly made and 3-month-old impregnated filter papers (stored in the dark at $4^{\circ} \mathrm{C}$ ) were compared for the insecticides permethrin, malathion, carbaryl and IDIT:

Ten schools in Bristol and Bath were visited (total number of pupils $=330(0)$ following permission granted by the South \& West Research Ethics Committee. Schools were randomly chosen following consent from the individual head teachers. Consent for examining and treating children was obbained from parents, and the local school nurse was present during all examinations. Head lice were collected from school children (aged 5-11) using a line-toothed lice comb. Live adult head lice were pooled to provide suflicient test numbers, randomized and exposed to impregnated filter papers at three concentrations of insecticides above and below $1, D_{10}$ for permethrin, carbaryl and malathion and equal to $\mathrm{IO}_{75}$ for 1 IIT' The tilter papers had been prewarmed and remained in an airtight 32-L temperature controlled portable incubator set at $30^{\circ} \mathrm{C}$ and 70.1 r.h. using a beaker containing $3+g$ of potassium hydroxide in 100 ml of distilled water. ${ }^{9}$ Control head lice were placed on untreated filter papers.
Two of the over-the-counter products for head lice were tested by the primary anthor (AMRD) on a group of school children (aged 7-9 years) frem two of the 10 schools, all of whom had an infestation with live adult head lice. One per cent aqueous malathion (Derbac-M ${ }^{(B)}$, Seton-Scholl Healthcare plc, Tubiton House, Oldham, U.K.) or aqueons perme(hrin ( $1 \%$ Lyclear ${ }^{(3)}$, creme rinse, Warter lambert IIK Lid, Lambert Court, Eastleigh, U.K.) was applied to the dry hair, massaged into the scalp, combed through and washed out 20 h later with a normal shampoo. Permethrin and malathion were left on the same length of time to standardize the protocol. 'The children's hair was re-examined 48 or 72 h alter initial insedicide application, using a linetoothed lice comb to identily live adult head lice. A head lice infestation was delined as the presence of one or more live adalt lice. It is recognized that pediculicides are not $100 \%$ ovicidal $^{2.10}$ and for this reason
the presence of nymphs was not taken as evidence of treatment failure.

## Results

There was no difference in potency between 3-monthold and freshly prepared filter papers, establishing the long-term stability of these insecticides on lilter paper at low concentrations when stored in the dark at $4^{\circ} \mathrm{C}$. Consistent percentage mortality results were obtained from the body Ilce and cat Ileas (Ctenorephalides felis) on impregnated lilter paper exposure (results not shown), which validates the reproducibility of this method of preparing lifter papers. Ninety-five per cent ol the school population was examined. Table 1 shows the combined head lice mortality for Bristol and Bath. There is a significant difference ( $P<10^{-6}$ Fishers exact test) between head and body lice survival for malathion, permethrin and DIST, but not for carbaryl.

For the treatment of Bristol school children with permethrin. 100 children were examined from three classrooms. Sixteen children were inlested: $38 \%$ (six of 16) were heavily infested ( $\geq 10$ ) adult lice) and $62 \%$ ( 10 of 16 ) had a lighter infestation $(<10$ adult lice). Following treatment. $13 \%$ (two of 15 ) had no head lice (both had had light insect loads), and of the remaining $87 \%$ ( 13 of 15 ), $20 \%$ (three of 13 ) had a partial decrease in insect load, and $62 \%$ ( 10 of 13 ) remained unaltered. For the treatment of Bath school children with malathion, 65 children were examined from three classrooms. Fourteen children were infested; all with a light insect load. Following treatment, $36 \%$ (live of 14) had no head lice, and $64 \%$ (nine of 14 ) remained unaltered.

## Discussion

The high survival rate of head lice on treated individuals suggests resistance to the local treatments used (permethrin in Bristol and malathion in Bath). The high survival rates on impregnated filter papers to both insecticides infers doubly resistant head lice in both areas. We suspect that this is not just a regional phenomenon. National Health Service prescriptions for England and Wales between 1990 and 1995 for all products with a licence for use against head lice have risen $3 \cdot 7$-fold, from just over 400000 ( prescriptions to $1500000 .{ }^{11}$ National sales data from head lice product manufacturers show a similar trend over the last 10 years and presumably reflect a rising head lice population. ${ }^{11}$ 'The excessive chronic application of head lice treatments increases the chances of developing

|  | No. ol horly lice lested |  | 'Tobial no. of Bristol heind lice tested |  | 'Total no. of Band head lice lested |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dend | Slive | Dead | Alive | Dead | Alive |
| Milathiow |  |  |  |  |  |  |
| $0 \cdot 1 \mathrm{~g} / 100 \mathrm{ma}$ |  |  |  |  |  |  |
| isopropamol | 56 | 4 | 3* | 75* | $9^{*}$ | 120* |
| $0 \cdot 2$ | 70 | 0 | $17^{*}$ | $53^{*}$ | 17* | 106* |
| $10 \cdot 4$ | 610 | 0 | $40^{*}$ | 32* | 36* | 92* |
| Permethrin |  |  |  |  |  |  |
| $0 \cdot 025 \mathrm{~g} / 100 \mathrm{ml}$. |  |  |  |  |  |  |
| isopropanol | 57 | 3 | 4* | $69^{*}$ | 14* | $130^{*}$ |
| (1).05 | 70 | 0 | 7* | 58* | 12* | 128* |
| $0 \cdot 1$ | * | 0 | $12^{*}$ | 52* | $22^{*}$ | $103^{*}$ |
| Carbaryl |  |  |  |  |  |  |
| $0.8 \mathrm{~g} / 100 \mathrm{ml}$. | 62 | 8 | 61 | 3 | 129 | 6 |
| 1.6 | 70 | 0 | 70 | 5 | 140 | 2 |
| $3 \cdot 2$ | 71 | 0 | 77 | 3 | 140 | 2 |
| \|19 |  |  |  |  |  |  |
| $2 \mathrm{~g} / 100 \mathrm{ml}$, isopropintol | 30 | 10 | $0^{*}$ | $32^{*}$ |  |  |

'Table I. Tohal number of dead mat ane tae for susceptible lwaly lice. combinced Bristol scheols head lice and combined Bath schowels lecad lice at three insecticide comeentrations $\geq 1, \mathrm{~A})_{\text {(os, }}$ for susceplible hody lice (permethrin. malathion, carbaryl) and al $\left.\mathrm{l}_{1}\right)_{75}$ for DIDT. All control lice (not shown) remained alive

* $P<10^{-6}$ (Fisher's exact lest): oher differences not significamt
resistance to these products. Both malathion and permethrin are available over-the-counter as well as on prescription. so there are no saleguards to prevent unestrained and indiscriminate use of either product. Carbaryl. in the U.K.. is a prescription only medication. Its limited use may be a reason why we have not seen any resistance develop to this product.
Electrophysiological studies on the houselly show that synthetic pyrethroids have two effeets on insect nervous tissuc. ${ }^{12}$ Type I effects cause hyperexcitability and uncoordinated movements. and are not related to mortality. TYpe II effects caluse comvulsions and paralysis. and are related to mortality. (Our in vilro and in vivo studies conlirm this observation in head lice. Permethrin exhibits type I effects. but at higher concentrations it exhibits type II effects. ${ }^{13}$ II has been shown in mosquitoes, ${ }^{1+4}$ and houselliess ${ }^{15}$ that DITI has the same mode of action as synthetic pyrethroids, and that DID'T resistance and pyrethroid resistance are due to an altered insecticide binding site within insect nerves (the so-called kidr resistance). As we have shown that the head lice are resistant to both permethrin and DDT. this suggests that the resistant mechanism in head lice is due to kidr resistance. We were unable to obtain an $\mathrm{LI}_{100}$ for IIITT: 'This may have been due to DD'T binding strongly to the filter paper and only a small amount entering the head louse.

Further studies on housellies ${ }^{13}$ hiave shown that pyrethroid toxicity is inversely related to temperature. The portable incubator allowed the filter papers and head lice to remain at a constant temperature.

Both malathon (an orgamophosphate) and carbaryl (a carbamate) irreversibly bind to acetylcholinesterase at the same binding site, preventing its function and causing spastic paralysis and death. ${ }^{16}$ As head lice remain fully sensitive to carbaryl, it suggests that the malathion resistance is not due to an altered acetylcholinesterase binding site. It is likely that a specific malathion resistance mechanism is in operation. This probably means that head lice are not resistant to other organophosphates. Some authorities suggest that $5 \%$ is more appropriate for resistance testing for malathion, but we used up to $0.4 \%$ because it corresponded to a concentration that was beyond the 1,$)_{1(x)}$ for the susceptible body lice and a clear difference was observed.

Only $7-8$-ycar-old pupils were assessed for topical treatment as they were found to be the most heavily infested age group. Permethrin was used to treat Bristol pupils and malathion was used for Bath pupils in order to adhere to the local prescribing advice for pediculicides. The study was therefore only single blind. Only $20 \%$ of infested school children had parental consent for treatment. Siblings and other lamily members were not treated so the potential for re-infestation was high.

However．following the conventional application of a topical insecticide．there is insecticide impregnation of the scalp and hair shalts．This allows a lethal dose of insecticide to be delivered to any newly hatched nymphs or refugee lice from another person for many days if not weeks．${ }^{17,18}$＇The adull head lice that we found 48 and 72 h later on the sealp of the permethrin or malathion treated children must be resistant to these products．Given that lice can be difficult to find in hair with low levels of inlection，then it is very likely that our results are an underestimate of the problem．

This study contirms the suspicion that head lice are resistant to the over－the－counter treatments available in the IJ．K．which contain malathion or permethrin and is in keeping with the types of resistance which have developed in other insect species ${ }^{19}$ due to chronic pesticide use．

The Department of Health in the U．K．acknowledges that carbaryl has a mutagenic potentian，${ }^{20}$ and should continue to have restricted use only．Novel insecticides． such as lipronil ${ }^{-1}$ and imidacloprid ${ }^{22}$ which are eflective llea pesticides．require a rapid evaluation for intro－ duetion into the market to provide new safe products for the chemical control of head lice．

## Acknowledgments

The board of spectial Irustees，United Bristol Itealthcare Trust，for funding．Dr lan Burgess，Medical Entomology Centre，Cambridge．for the provision of body lice．

## References

 pyrethroid insecticieles in Britain．Br Med／1995；311：75．2．
2 Chosidow（）．Chastang（＇．Brue（＇ 14 al．Controlled study ol matathion and d－phemothrin losions for bediahus hamames vor

 in the head louse lidiculus capitis firom istacl．Med l＇e lintomol 1995；9：427－32．
； 4 Silverton N．Malalhion－resistant pediculosis capitis．Br Med／ 1972；30：646－7．

5 Blommers L．van lemmen M．Head lice in the Nethertands：
 23：243－51．
6 Vander Stichele RII，Deseure l：M，Bogaert MC．Systemic review of clinical ellicacy of lopical treatments for head lice．Br Med／ノツソ5： 311：604－8．
7 Busvince IR．Evidence firon double inlestations lor the speceitix status of human head lice and body lice（Anophara）．Sifst limomol 1978：3：1－8．
8 World Health Organization．Resistance of Vectors and Reservoirs of Diserase to Prsticides．22nd Report of the WIJO Expert Commit－ tee on Insecticides．Technical Report Series 585．（ieneva：WIIO． 1976.

9 I＇aranjpe JR．＇The water pressure of concentrated solutions．／Imbian Inst Sci l918：2：59－65．
10 de Boer R．Bflicaty of malathion and synergised bioatlethrine in the freatment of head louse，Pediculas humamas ssp．capitis．inters－ Lation．Acto Ladensial Iリ84；52：53－9．
11 Downs AMR，Harvey I，Kennedy＂I＇C．The epidemiology of head lice and scabies．Eipidemiol Infied in press．
12 Silgado VI，Irving SN，Miller TA．The importance of nerve terminal depolarization in pyredhroid poisoning of insects．Pest Bioncom 1＇lysiol 1983：20：169－82．
13 Narahashi＇I＇．Nerve membrame Nat chammels as largeling of insecticides．Trumds Pharmacol Sif 1992；13：236－41．
14 Malcom CA．＇The genetic basis of pyrethroid and DIt＇resistance
 （anctica1983：60：221－9．
15 Williamson MS．Denholm I，Bell CA ef al．Knockdown resistance （kelr）to IDI＇T＇and pyrethroid insecticides maps to al sodium chamel gene locus in the housefly（Musca domestica）．Mol Gen Genet 1993： 240：17－22．
16 Mutero A，I＇ratavorio M，Bride IM at al．Resistathe－iassociated point mutations in insecticide－insensitive acetyldholinesterase． Prac Nall Acal Sidi USA 1994；91：592）－6．
17 Meinking＇Tl．Taphin I）．Satety of permethrin vs lindane for the Ireatment of scabies．Ard Dermutol 1996；132：959－62．
18 Maunder JW．Resistance to organochlorine insecticides in head lice，and trials using allernalive componads．Mad officer 1 7 I； 125：27－30．
19 Keiding f．Persistence of resistant populations after the relaxation of the selection pressure．Winfl Rev lese（＇antol 1967：6：115－30．
20）Scowen I？Government restricts the use of carbaryl for lead lice． Prof Corr Mother child 1995：5：163－5．
21 Postal JMIR Jeannin P＇Consalvi PI．Jied dilacacy of a mechanieal punp spay liomalation conatining $0.25 \%$ lipronil in the trati－ ment and control of tlea inlestation and associated dermatological signs in dogs and cats．Vel Dermutol 1995；6：153－8．
22 Jacobs DE．Hutchinson MJ．Krieger KJ．Duration of activity of imidaclopid．a novel adalicide lor llea control．againast C＇tomo－ cephatides folis on cats．Vet Rer 1997；140：259－60．


[^0]:    Correspondence: Dr A.M.R.Downs, Department of Dermatology, Bristol Royal Infirmary. Bristol BS2 81IW, I.K. Fax: 01179282845

