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 REGULATION AND STABILITY OF HOST-PARASITE
 POPULATION INTERACTIONS

 I. REGULATORY PROCESSES

 BY ROY M. ANDERSON AND ROBERT M. MAY

 Zoology Department, King's College, London University, London WC2R 2LS, and
 Biology Department, Princeton University, Princeton, N.J. 08540, U.S.A.

 SUMMARY

 (1) Several models describing the dynamics of host-parasite associations are discussed.
 (2) The models contain the central assumption that the parasite increases the rate of

 host mortalities. The parasite induced changes in this rate are formulated as functions
 of the parasite numbers per host and hence of the statistical distribution of the parasites
 within the host population.

 (3) The parameters influencing the ability of the parasite to regulate the growth of its
 host's population, and the stability of parasite induced equilibria, are examined for each
 model.

 (4) Three specific categories of population processes are shown to be of particular
 significance in stabilizing the dynamical behaviour of host-parasite interactions and
 enhancing the regulatory role of the parasite.

 These categories are overdispersion of parasite numbers per host, nonlinear functional
 relationships between parasite burden per host and host death rate, and density depen-
 dent constraints on parasite population growth within individual hosts.

 INTRODUCTION

 Eucaryotic parasites of one kind or another play a part in the natural history of many,
 if not most, animals. Man is not exempt: considering helminth parasites alone, roughly
 200 million people are affected by the trematode species which cause schistosomiasis and
 300 million by the filarial nematode parasites. A multitude of other internal and external
 parasites of man produce effects ranging from minor irritations to major diseases.

 The relation between populations of such parasites and their hosts can be regarded as a
 particular manifestation of the general predator-prey interaction. Predator-prey theory
 has received much attention since the work of Lotka and Volterra in the 1920s, and all
 contemporary ecology texts give a lot of coverage to the subject. This work, however,
 tends to draw its inspiration, and its empirical basis, from the world of moose and wolves
 (with differential equations for continuously overlapping generations) or of arthropod
 predators and their prey (with difference equations for discrete, non-overlapping gener-
 ations); see, e.g. the reviews by May (1976, ch. 4.) and Hassell (1976). That is, the exten-
 sive predator-pray literature pertains mainly to situations where (at least in effect) the
 predators kill and eat their prey.
 Analogous studies of the special kinds of predator-prey relations that are of parasito-
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 logical interest are comparatively few. Thus relatively little is known about the effects
 that parasites may have upon the population dynamics of their hosts.

 In this paper we explore the dynamical properties of some simple models which aim to
 capture the essential biological features of host-parasite associations. In analogy with
 earlier work on arthropod systems (Hassell & May 1973; Hassell, Lawton & Beddington
 1976; Beddington, Hassell & Lawton 1976), we have tried to build the models on bio-
 logical assumptions that are rooted in empirical evidence.

 The paper is organized as follows. After giving a more precise definition of what we
 mean by the term 'parasite', we outline the biological assumptions upon which the 'Basic
 model' rests, and expound the dynamical properties of this model. The Basic model
 assumes parasites to be distributed independently randomly among hosts; various
 patterns of non-random parasite distribution are then discussed, and introduced into
 'model A', which is then investigated. The effects of varying the way the host's mortality
 depends on the density of parasites ('model B'), and of introducing density dependence
 into the parasites' intrinsic death rate ('model C') are explored. The following paper
 (May & Anderson 1978) goes on to discuss various destabilizing influences and encom-
 passes the interaction between host and parasite reproduction rates, transmission factors,
 and time delays.

 Throughout, the text aims to be descriptive with results displayed graphically and the
 emphasis on the biology of host-parasite associations. The mathematical analysis of the
 stability properties of the various models is relegated to appendices.

 THE TERM 'PARASITISM'

 Parasitism may be regarded as an ecological association between species in which one
 the parasite, lives on or in the body of the other, the host. The parasite may spend the
 majority of its life in association with one or more host species, or alternatively it may
 spend only short periods, adopting a free-living mode for the major part of its develop-
 mental cycle. During the parasitic phase of its life cycle, the organism depends upon its
 host for the synthesis of one or more nutrients essential for its own metabolism. The
 relationship is usually regarded as obligatory for the parasite and harmful or damaging
 for the host. To classify an animal species as parasitic we therefore require that three
 conditions be satisfied: utilization of the host as a habitat; nutritional dependence; and
 causing 'harm' to its host.

 When one considers such interactions at the population level, the terminology now
 used for labelling animal associations appears rather confusing and imprecise (see Starr
 1975; Askew 1971; Dogiel 1964). This is particularly apparent when one tries to formalize
 the nature of the harmful effect of a parasitic species on the population growth of its
 host. These difficulties do not always arise. For example, insect parasitoids as a develop-
 mental necessity invariably kill their host, the parasite surviving the death it induced by
 the adoption of a free-living mode of life in the adult phase. Askew (1971) has termed
 such species 'protean parasites' since they are parasitic as larval forms and free-living
 when adult.

 Other eucaryotic parasitic organisms such as lice, fleas, ticks, mites, protozoa and
 helminths exhibit the nutritional and habitat requirements of a parasite but appear to do
 very little harm to their hosts, unless present in very large numbers. Such species do not

 kill their hosts as a prerequisite for successful development; indeed, in contrast to
 parasitoid insects, these organisms are often themselves killed if they cause the death of
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 their host. Although parasite induced host deaths usually result when heavy infections
 occur, the precise meaning of the word heavy will very much depend on the size of the
 parasite in relation to its host, and the niche and mode of life adopted by the parasite
 within or on the host.

 In this paper, we use the term parasite to refer to species which do not kill their host
 as a prerequisite for successful development. This distinguishes parasites from parasitoids.

 Parasites exhibit a wide degree of variability between species in the degree of harm or
 damage they cause to their hosts. At one extreme of the spectrum, parasites merge into
 the parasitoid type of association with their close relationship (in population terms) with
 predator-prey interactions. At this extreme, death will invariably result from parasite
 infection, but in contrast to parasitoids such host deaths will also kill the parasites
 contained within. At the other end of the spectrum lie the symbiotic forms of association
 in which the symbiont lives on or in the host with a degree of nutritional dependence
 akin to a permissive gastronomic hospitality. Species at this end of the spectrum cause
 negligible, if any, harm to the host even when present in very large numbers.

 In terms of their population dynamics, there will be differences between parasites at
 the two ends of this spectrum; between the parasitoid like parasites and the symbionts.
 Crofton (1971a, b) has stressed the importance of quantifying these notions, and has
 suggested that a useful first step lies in the definition of a 'lethal level', which measures the
 typical number of parasites required to kill a host. As Crofton notes, quantitative
 information about such lethal levels is hard to come by.

 We shall return to these quantitative questions below: for the present we propose that
 an organism only be classified as a parasite if it has a detrimental effect on the intrinsic
 growth rate of its host population.

 BASIC MODEL: BIOLOGICAL ASSUMPTIONS

 We define H(t) and P(t) to be the magnitudes of the host and parasite populations,
 respectively at time t; the average number of parasites per host is thenP(t)/H(t). We assume
 that the vast majority of protozoan and helminth parasites exhibit continuous population
 growth, where generations overlap completely. The equations describing the way the
 host and parasite populations change in time are thus formulated as differential equations.
 The basic model is for parasite species which do not reproduce directly within their

 definitive or final host, but which produce transmission stages such as eggs, spores or
 cysts which, as a developmental necessity, pass out of the host. This type of parasite life
 cycle is shown by many protozoan, helminth and arthropod species. In the following
 paper (May & Anderson (1978) in model E) this basic framework is modified to encom-
 pass species, such as some parasitic protozoa, which have a reproductive phase which
 directly contributes to the size of the parasite population within the host.

 We assume that all parasitic species are capable of multiply infecting a proportion of
 the host population and that the birth and death rates of infected hosts are altered by the
 number of parasites they harbour. The precise functional relationship between the num-
 ber of parasites harboured and the host's chances of surviving or reproducing varies
 greatly among different host-parasite associations. The rate of parasite induced host
 mortalities may increase linearly with parasite burden or as an exponential or power law
 function. Some examples of these functional relationships for protozoan, helminth and
 arthropod parasites of both vertebrate and invertebrate host species are shown in Fig. 1.
 Sometimes the relationship may be of a more complex form than suggested by these
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 examples. The parasite, for instance, may act in an all-or-nothing manner where low
 burdens do not influence the hosts survival chances but at a given threshold burden the
 death rate rises very rapidly resulting in certain death for the hosts. In general, however,
 where quantitative rate estimates are available the 'harmful' effect of the parasite is
 usually of the more gradual forms indicated in Fig. 1.

 In the majority of host-parasite associations it appears to be the death rate rather than
 the reproductive rate of the host which is influenced by parasitic infection. Exceptions to
 this general pattern are particularly noticeable in the associations between larval digenean
 parasites and their molluscan intermediate hosts. Many parasitic arthropods also
 decrease the reproductive power of their hosts, and in certain cases complete parasitic
 castration occurs.

 Accordingly, the majority of our models assume that the parasite increases the host
 death rate. Attention is given to the population consequences of parasite induced
 reduction of host reproductive potential (in Model D) in the following paper (May &
 Anderson 1978).

 TABLE 1. Description of the principal population parameters used in the models

 Parameter Description

 a Instantaneous host birth rate (/host/unit of time).
 b Instantaneous host death rate, where mortalities are due to 'natural causes' (/host/unit of

 time).
 a Instantaneous host death rate, where mortalities are due to the influence of the parasite

 (/host/unit of time).
 A Instantaneous birth rate of parasite transmission stages where birth results in the production

 of stages, which pass out of the host, and are responsible for transmission of the parasite
 within the host population (i.e. eggs, cysts, spores or larvae) (/parasite/unit of time).

 # Instantaneous death rate of parasites within the host, due to either natural or host induced
 (immunological) causes (/parasite/unit of time).

 Ho Transmission efficiency constant, varying inversely with the proportion of parasite trans-
 mission stages which infect members of the host population.

 r Instantaneous birth rate of parasite, whose birth results in the production of parasitic
 stages which remain within the host in which they were produced (/parasite/unit of time).

 The two basic equations, for dH/dt and dP/dt, are constructed from several compon-
 ents, each of which represents specific biological assumptions. A summary of our nota-
 tion is given in Table 1. These components will now be discussed, one by one.

 The growth of the host population

 We assume that the rate of growth of the host population is simply determined by the
 natural intrinsic rate of increase in the absence of parasitic infection minus the rate of
 parasite induced host mortalities. Both the host reproductive rate a, and the rate of
 'natural' mortalities b, are represented as constants unaffected by density dependent
 constraints on population growth. We use the term 'natural' mortalities to encompass all
 deaths due to causes other than parasitic infection, e.g. predation and senescence.

 Our omission of density dependent constraints on host population growth is deliberate.
 We recognize that in the real world host population growth will be limited by, among
 other factors, intraspecific competition for finite resources. Since our aim, however, is to
 provide qualitative insights into the mechanisms by which parasites regulate host
 population growth, we have excluded the concept of a carrying capacity of the hosts'
 environment to simplify algebraic manipulations. Such simplification clarifies predictions
 of biological interest.
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 We assume that if the parasite fails to control host population growth, exponential
 increase of the host population occurs until resource limitation results in the gradual
 approach to a carrying capacity.
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 FIG. 1. Some examples of the functional relationship between the rate of parasite induced
 host mortalities (a) and the parasite burden (i) per host. (The straight lines in graphs (a), (b)
 and (c) are the least squares best fit linear models and the curves in the graphs (d), (e) and (f)
 are the least squares best fit exponential models). (a) Snail host Lymnea gedrosiana (Annan-
 dale and Prashed) parasitized by the larval stages of the digenean Ornithobilharzia turkes-
 tanicum (Skrjabin) (data from Massoud 1974); (b) aquatic Hemipteran Hydrometra myrae
 (Bueno) parasitized by the mite Hydryphantes tenuabilis (Marshall) (data from Lanciani
 1975); (c) laboratory mouse parasitized by the digenean Fasciola hepatica (L.) (data from
 Hayes, Bailer & Mitovic 1973); (d) laboratory mouse parasitized by the nematode Heligmos-
 omoidespolygyrus (Dujardin) (data from Forrester 1971); (e) laboratory rat parasitized by
 the nematode Nippostrongylus brasiliensis (Yokogawa) (data from Hunter & Leigh 1961);
 (f) laboratory mouse parasitized by the blood protozoan Plasmodium vinckei (Vinke and

 Lips) (data from Cox 1966).
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 then be represented as ci bt, where o is a constant determining the pathogenicity of the
 parasite to the host; the corresponding death rate among hosts with i parasites is ai. The
 total rate of loss of hosts in a population of size H(t) is therefore

 aH(t) E i. p(i).
 i =

 Here p(i) is the probability that a given host contains i parasites. Clearly p(i) will depend
 on i and on various parameters characterizing the parasite distribution within the host
 population. The above sum is, by definition, the average number of parasites per host at
 time t:

 E i. p(i) Et(i) = P(t)/H(t).
 i= 0

 In short, under the above assumptions the net rate of parasite induced host mortality
 is

 P(t). (1)

 Parasite fecundity and transmission
 The rate of production of transmission stages (such as eggs, spores or cysts) per
 parasite is defined as A, leading to a net rate for the toal parasite population of

 IH(t) E i.p(i) = P(t). (2)
 i = 0

 In the case of direct life cycle parasites where only a single species of host is utilized,
 the transmission stages will pass out of the host into the external environment and will
 survive in this habitat as resistant stages or free-living larvae awaiting contact with or
 ingestion by a member of the host population. While in the external habitat, they will be
 subject to natural mortalities due to senescence or predation and thus only a proportion
 of those released will be successful in gaining entry to a new host. The magnitude of this
 proportion will depend on the density of the host population in relation to other 'absor-
 bers' of the transmission stages, and the proportion may be characterized by the trans-
 mission factor (cf. MacDonald 1961)

 H(t)/(Ho + H(t)).

 Here Ho is a constant which, when varied, inversely determines the efficiency of
 transmission. When H(t) is large and Ho small, the efficiency approaches unity, where all
 the transmission stages produced gain entry to the host population. Conversely when
 H(t) is small and Ho large only a small proportion are successful.

 The net rate at which new parasites are aquired within the host population is thus

 . P(t) . H(t)/(Ho + H(t)). (3)

 This term contains the assumption that transmission is virtually instantaneous, no
 time delay occurring due to developmental processes between the birth of a transmission
 stage and successful contact with a new host. In some parasite life cycles, transmission
 stages are immediately infective to a new host, but in the majority certain developmental
 processes have to occur before the stage becomes fully infective. The influence of time
 delays in the transmission term will be examined as a modification to the basic model in
 the following paper (Model F in May & Anderson 1978).
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 parasite to the host; the corresponding death rate among hosts with i parasites is ai. The
 total rate of loss of hosts in a population of size H(t) is therefore

 aH(t) E i. p(i).
 i =

 Here p(i) is the probability that a given host contains i parasites. Clearly p(i) will depend
 on i and on various parameters characterizing the parasite distribution within the host
 population. The above sum is, by definition, the average number of parasites per host at
 time t:

 E i. p(i) Et(i) = P(t)/H(t).
 i= 0

 In short, under the above assumptions the net rate of parasite induced host mortality
 is

 P(t). (1)
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 The rate of production of transmission stages (such as eggs, spores or cysts) per
 parasite is defined as A, leading to a net rate for the toal parasite population of

 IH(t) E i.p(i) = P(t). (2)
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 In the case of direct life cycle parasites where only a single species of host is utilized,
 the transmission stages will pass out of the host into the external environment and will
 survive in this habitat as resistant stages or free-living larvae awaiting contact with or
 ingestion by a member of the host population. While in the external habitat, they will be
 subject to natural mortalities due to senescence or predation and thus only a proportion
 of those released will be successful in gaining entry to a new host. The magnitude of this
 proportion will depend on the density of the host population in relation to other 'absor-
 bers' of the transmission stages, and the proportion may be characterized by the trans-
 mission factor (cf. MacDonald 1961)

 H(t)/(Ho + H(t)).

 Here Ho is a constant which, when varied, inversely determines the efficiency of
 transmission. When H(t) is large and Ho small, the efficiency approaches unity, where all
 the transmission stages produced gain entry to the host population. Conversely when
 H(t) is small and Ho large only a small proportion are successful.

 The net rate at which new parasites are aquired within the host population is thus

 . P(t) . H(t)/(Ho + H(t)). (3)

 This term contains the assumption that transmission is virtually instantaneous, no
 time delay occurring due to developmental processes between the birth of a transmission
 stage and successful contact with a new host. In some parasite life cycles, transmission
 stages are immediately infective to a new host, but in the majority certain developmental
 processes have to occur before the stage becomes fully infective. The influence of time
 delays in the transmission term will be examined as a modification to the basic model in
 the following paper (Model F in May & Anderson 1978).
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 The assumptions incorporated in the two equation host-parasite model are most
 closely linked to direct life cycle parasitic species. The population dynamics of indirect
 life cycle species can also be interpreted in light of the model's predictions if the popu-
 lation processes acting on the intermediate host or hosts and the parasitic larval stages
 are subsumed into the transmission term (i.e. into the factor Ho in eqn (3)). This is
 obviously a major simplifying assumption, particularly in respect to the time delays which
 will occur during a parasite's development in its intermediate host (for a review of this
 subject, see May 1977). The dynamical properties of the basic model with time delays
 will thus be more akin to the population dynamics of indirect life cycle parasites.

 Parasite mortalities

 The death rate for parasites within the host population has three components.
 First, there are losses due to natural host mortalities. With the intrinsic per capita host

 mortality rate b, such parasite losses are at the net rate
 00

 b. H(t) E i. p(i) = b. P(t). (4)
 i-= 0

 Second, there are losses from parasite induced host deaths, where the per capita host
 loss rate (discussed above) is taken to be ai. The consequent net mortality rate of para-
 sites from this cause is

 00

 acH(t) E i2p(i) _- H(t)Et(i2). (5)
 i = o

 Here E(i2) is the mean-square number of parasites per host, the precise value of which
 depends on the form of the probability distribution of parasite numbers per host, p(i).
 That is, E (i) depends on the mean parasite load, P(t)/H(t), and also on the parameter(s)
 that specify this distribution. Appendix 1 lists the values of this 'second moment' for
 some commonly used discrete probability distributions, giving E(i2) in terms of the mean
 parasite load and measures of over- and under-dispersion.

 Third, there is a component of the parasite death rate generated by natural parasite
 mortality within the host. Assuming a constant per capita parasite intrinsic mortality
 rate ,i, these losses make a net contribution of

 P(t) (6)

 to the overall parasite mortality rate. These 'natural' parasite mortalities include deaths
 due to host immunological responses, as well as more conventional losses from parasite
 senescence.

 BASIC MODEL: DYNAMICS

 The biological ingredients discussed above can now be drawn together to give two
 differential equations, one describing the rate of change of the host population,

 dH/dt =(a-b)H-acP (7)

 and the other describing the parasite population dynamics,

 dP/dt = (APH/(Ho + H)) - (b + )P - HEt(i2). (8)

 If the parasites are distributed independently randomly among hosts, eqn (8) then
 becomes (see Appendix 1):
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 parasite load and measures of over- and under-dispersion.
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 mortality within the host. Assuming a constant per capita parasite intrinsic mortality
 rate ,i, these losses make a net contribution of

 P(t) (6)

 to the overall parasite mortality rate. These 'natural' parasite mortalities include deaths
 due to host immunological responses, as well as more conventional losses from parasite
 senescence.

 BASIC MODEL: DYNAMICS

 The biological ingredients discussed above can now be drawn together to give two
 differential equations, one describing the rate of change of the host population,

 dH/dt =(a-b)H-acP (7)

 and the other describing the parasite population dynamics,

 dP/dt = (APH/(Ho + H)) - (b + )P - HEt(i2). (8)

 If the parasites are distributed independently randomly among hosts, eqn (8) then
 becomes (see Appendix 1):
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 dP/dt = P(AH/(Ho + H) -(b + + a) - -aP/H). (9)

 Eqns (7) and (9) readily yield the equilibrium (dH/dt = dP/dt = 0) host and parasite
 population values, H* and P*. From eqn (7) the equilibrium mean parasite burden is

 P*H* = (a-b)la, (10)

 whence from eqn (9) H* is

 - Ho-(+a+a) AHo (u + x + a)'

 Provided the host population's intrinsic growth rate is positive (a-b>0), eqn (11)
 reveals that the parasites are capable of regulating the growth of the host population only
 if

 A > #++a. (12)

 l i: It fII

 1It r I 'I I
 600-1

 ii I i I I
 00- I I I I I I
 1 I II I

 " I I I I I I I

 a" I I I
 iiI I

 = 0-1, Ho = 100, a = 0-5, A = 6-0).

 This corresponds to the sensible requirement that the parasite 'birth rate' be in excess
 of the host birth rate (a) plus parasite death rates (both intrinsic, ,u, and due to
 parasite induced host deaths, o). If this inequality (12) is not satisfied, the host population
 grows exponentially and will eventually be constrained by other regulatory processes
 such as finite resources. The parasite will also grow exponentially but at a slower rate
 than the host population and thus the mean number of parasites per host will tend to
 zero.

 Equations (7) and (9) may be viewed as a general pair of predator-prey equations, and
 the following comments made. (i) In the 'prey' equation, (7), the 'predators' have a

 dP/dt = P(AH/(Ho + H) -(b + + a) - -aP/H). (9)

 Eqns (7) and (9) readily yield the equilibrium (dH/dt = dP/dt = 0) host and parasite
 population values, H* and P*. From eqn (7) the equilibrium mean parasite burden is

 P*H* = (a-b)la, (10)

 whence from eqn (9) H* is
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 Provided the host population's intrinsic growth rate is positive (a-b>0), eqn (11)
 reveals that the parasites are capable of regulating the growth of the host population only
 if

 A > #++a. (12)
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 This corresponds to the sensible requirement that the parasite 'birth rate' be in excess
 of the host birth rate (a) plus parasite death rates (both intrinsic, ,u, and due to
 parasite induced host deaths, o). If this inequality (12) is not satisfied, the host population
 grows exponentially and will eventually be constrained by other regulatory processes
 such as finite resources. The parasite will also grow exponentially but at a slower rate
 than the host population and thus the mean number of parasites per host will tend to
 zero.

 Equations (7) and (9) may be viewed as a general pair of predator-prey equations, and
 the following comments made. (i) In the 'prey' equation, (7), the 'predators' have a
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 constant 'attack rate'; compared with the classic, but unrealistic, Lotka-Volterra model,
 this is a destabilizing feature, for it prevents the predators being differentially more
 effective at high prey densities. (ii) In the 'predator' equation, (9), we have a kind of
 logistic equation, with a predator carrying capacity' proportional to the prey density;
 this has a stabilizing effect (for a more full discussion and review along these general
 lines, see May (1976), ch. 4). In order to see how these countervailing tendencies are
 resolved, we need to make a stability analysis of the system of eqns (7) and (9).
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 FIG. 3. Some examples of observed frequency distributions of parasite numbers per host
 which are empirically described. by the negative binomial ((a) and (b)) or the Poisson ((c)
 and (d)) models. (a) The distribution of the tick Ixodes trianguliceps (Birula) on a popu-
 lation of the field mouse Apodemus sylvaticus (L) (data from Randolph 1975); (b) the
 distribution of the tapeworm Caryophyllaeus laticeps (Pallas) within a population of the
 bream Abramis brama (L.) (data from Anderson 1974a); (c) the distribution of larval stages of
 the nematode Cammallanus oxycephalus (Ward and Magath) in a; population of young
 gizzard shad fish Dorosoma cepedianum (Day) sampled in mid summer (data from Strom-
 berg and Crites 1974); (d) the distribution of the nematode Ascaridia galli in a population
 of chickens which had been artificially infected in the laboratory (data from Northam and

 Rocha 1958).

 For this biologically derived pair of equations, a rigorous and fully nonlinear stability
 analysis may be given elegantly. This is done in Appendix 2. The outcome is surprising:
 the equilibrium point defined by eqns (10) and (II1) is neutrally stable. That is, once
 perturbed from its equilibrium point the system oscillates with a period determined by the
 parameters of the model but with an amplitude dictated for ever after by the initial
 conditions of the displacement. The result is rigorously 'global', which is to say it holds
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 For this biologically derived pair of equations, a rigorous and fully nonlinear stability
 analysis may be given elegantly. This is done in Appendix 2. The outcome is surprising:
 the equilibrium point defined by eqns (10) and (II1) is neutrally stable. That is, once
 perturbed from its equilibrium point the system oscillates with a period determined by the
 parameters of the model but with an amplitude dictated for ever after by the initial
 conditions of the displacement. The result is rigorously 'global', which is to say it holds
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 true for displacements of arbitrary magnitude (provided the initial H(o) and P(o) are
 positive!). Figure 2 illustrates the dynamical behaviour of such a host-parasite system.

 This pathological neutral stability property means that the model defined by eqns
 (7) and (9) is structurally unstable: the slightest alteration in the form of the various
 underlying biological assumptions will precipitate the system either to stability (distur-
 bances damping back to the equilibrium point) or to instability (oscillations growing

 true for displacements of arbitrary magnitude (provided the initial H(o) and P(o) are
 positive!). Figure 2 illustrates the dynamical behaviour of such a host-parasite system.

 This pathological neutral stability property means that the model defined by eqns
 (7) and (9) is structurally unstable: the slightest alteration in the form of the various
 underlying biological assumptions will precipitate the system either to stability (distur-
 bances damping back to the equilibrium point) or to instability (oscillations growing
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 FIG. 4. Overdispersion of parasite numbers per host. The time dependent behaviour of the
 host (H(t)-solid line) and parasite (P(t)-stippled line) populations predicted by model A
 (eqns (7) and (13)). The populations exhibit damped oscillations to globally stable equilibria

 (a = 3'0, b = 1-0, , = 0-1, Ho = 10'0, a = 0-5, A = 6-0, k = 2-0).
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 host (H(t)-solid line) and parasite (P(t)-stippled line) populations predicted by model A
 (eqns (7) and (13)). The populations exhibit damped oscillations to globally stable equilibria

 (a = 3'0, b = 1-0, , = 0-1, Ho = 10'0, a = 0-5, A = 6-0, k = 2-0).
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 until the host population begins to encounter resource limitation effects as discussed
 above, whereupon stable limit cycles typically ensue). Such structural instability makes
 the model biologically unrealistic. The Lotka-Volterra model (although having a different
 biological and mathematical form from eqns (7) and (9)) also has this pathological and
 structurally unstable property of neutral stability, for which it has been trenchantly
 criticized (e.g. May 1975).

 The Basic model defined above is nevertheless very useful as a point of departure. We
 now proceed to modify it by introducing various kinds of density dependences, and of
 nonrandom parasite distribution among hosts. In each case, the relation between the
 underlying biology and the overall population dynamics is made clear by comparison
 with the razor's edge of the Basic model.
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 the model biologically unrealistic. The Lotka-Volterra model (although having a different
 biological and mathematical form from eqns (7) and (9)) also has this pathological and
 structurally unstable property of neutral stability, for which it has been trenchantly
 criticized (e.g. May 1975).

 The Basic model defined above is nevertheless very useful as a point of departure. We
 now proceed to modify it by introducing various kinds of density dependences, and of
 nonrandom parasite distribution among hosts. In each case, the relation between the
 underlying biology and the overall population dynamics is made clear by comparison
 with the razor's edge of the Basic model.
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 DISTRIBUTION OF PARASITES AMONG HOSTS

 The parasitological literature contains a great deal of information concerning the distri-
 bution of parasite numbers within natural populations of hosts. Almost without excep-
 tion these observed patterns are over dispersed, where a relatively few members of the
 host population harbour the majority of the total parasite population. It has become
 customary for parasitologists to fit the negative binomial model to such data, since this
 probability distribution has proved to be a good empirical model for a large number of
 observed parasite distributions. Figure 3 demonstrates the adequacy of this model in
 describing patterns of dispersion within host populations.

 Crofton (1971a) used this observed constancy in the form of parasite distributions as a
 basis for a quantitative definition of parasitism at the population level. The author based
 this definition on the large number of parasitological processes which could in theory
 generate the negative binomial pattern. It is difficult, if not impossible, however, to try
 to reach conclusions about the biological mechanisms generating a particular distribu-
 tion pattern by simply examining the resultant observed distribution of parasite numbers
 per host. A very large number of both biological and physical processes can generate the
 negative binomial model. Many of these processes have little relevance to the biologies
 of parasite life cycles while others are important to both parasitic and free-living organ-
 isms (Boswell & Patil 1971).

 The precise mechanisms giving rise to the patterns shown in Fig. 3(a) and (b) are many
 and varied. Two major factors are most probably heterogeneity between members of the
 host population in exposure to infection (Anderson 1976a) and the influence of past
 experiences of infection on the immunological status of a particular host (Anderson
 1976b). Such comments, however, are purely speculative since detailed experimental work
 is required to suggest generative processes which give rise to observed field patterns.

 Consideration of the precise mechanisms which generate a particular pattern is not of
 overriding importance when examining the qualitative influence of overdispersion on
 the dynamical properties of a particular host-parasite interaction. We assume that
 heterogeneity in the distribution of parasite numbers per host is the rule rather than the
 exception and then proceed to analyse the consequences of such patterns on the popu-
 lation biology of the system.

 From the purely phenomenological standpoint, the negative binomial has the virtue of
 providing a 1-parameter description of the degree of overdispersion, in terms of the
 parameter k: the smaller k, the greater the degree of parasite clumping. The distribution
 is discussed more fully in this light by Bradley & May (1977).

 It is worth noting, however, that a few reports of random and undispersed distribu-
 tions of parasites exist in the literature (Fig. 3(c) and (d)). These patterns are often
 observed either within laboratory populations (Northam & Rocha 1958; Anderson,
 Whitfield & Mills 1977), or within specific strata of a wild host population such as a
 particular age class (Anderson 1974b). In other cases random patterns may be observed
 at a particular point in time where the initial invasion of a host population has been
 captured by a sampling programme (Stromberg & Crites 1974).

 MODEL A: NONRANDOM PARASITE DISTRIBUTIONS

 Overdispersed distributions

 If the parasites are distributed among the hosts according to a negative binomial, we
 can use Appendix 1 to get an explicit expression for E(i2) in eqn (8), which then reads

 DISTRIBUTION OF PARASITES AMONG HOSTS
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 tion these observed patterns are over dispersed, where a relatively few members of the
 host population harbour the majority of the total parasite population. It has become
 customary for parasitologists to fit the negative binomial model to such data, since this
 probability distribution has proved to be a good empirical model for a large number of
 observed parasite distributions. Figure 3 demonstrates the adequacy of this model in
 describing patterns of dispersion within host populations.

 Crofton (1971a) used this observed constancy in the form of parasite distributions as a
 basis for a quantitative definition of parasitism at the population level. The author based
 this definition on the large number of parasitological processes which could in theory
 generate the negative binomial pattern. It is difficult, if not impossible, however, to try
 to reach conclusions about the biological mechanisms generating a particular distribu-
 tion pattern by simply examining the resultant observed distribution of parasite numbers
 per host. A very large number of both biological and physical processes can generate the
 negative binomial model. Many of these processes have little relevance to the biologies
 of parasite life cycles while others are important to both parasitic and free-living organ-
 isms (Boswell & Patil 1971).

 The precise mechanisms giving rise to the patterns shown in Fig. 3(a) and (b) are many
 and varied. Two major factors are most probably heterogeneity between members of the
 host population in exposure to infection (Anderson 1976a) and the influence of past
 experiences of infection on the immunological status of a particular host (Anderson
 1976b). Such comments, however, are purely speculative since detailed experimental work
 is required to suggest generative processes which give rise to observed field patterns.

 Consideration of the precise mechanisms which generate a particular pattern is not of
 overriding importance when examining the qualitative influence of overdispersion on
 the dynamical properties of a particular host-parasite interaction. We assume that
 heterogeneity in the distribution of parasite numbers per host is the rule rather than the
 exception and then proceed to analyse the consequences of such patterns on the popu-
 lation biology of the system.

 From the purely phenomenological standpoint, the negative binomial has the virtue of
 providing a 1-parameter description of the degree of overdispersion, in terms of the
 parameter k: the smaller k, the greater the degree of parasite clumping. The distribution
 is discussed more fully in this light by Bradley & May (1977).

 It is worth noting, however, that a few reports of random and undispersed distribu-
 tions of parasites exist in the literature (Fig. 3(c) and (d)). These patterns are often
 observed either within laboratory populations (Northam & Rocha 1958; Anderson,
 Whitfield & Mills 1977), or within specific strata of a wild host population such as a
 particular age class (Anderson 1974b). In other cases random patterns may be observed
 at a particular point in time where the initial invasion of a host population has been
 captured by a sampling programme (Stromberg & Crites 1974).

 MODEL A: NONRANDOM PARASITE DISTRIBUTIONS

 Overdispersed distributions

 If the parasites are distributed among the hosts according to a negative binomial, we
 can use Appendix 1 to get an explicit expression for E(i2) in eqn (8), which then reads
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 dP/dt = P{(H/(Ho + H)-( u + b + ot)-oa(k + 1)P/(kH)}
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 dP/dt = P{(H/(Ho + H)-( u + b + ot)-oa(k + 1)P/(kH)}  (13) (13)

 As mentioned above, k is the parameter of the negative binomial distribution which gives
 an inverse measure of the degree of aggregation or contagion of the parasites within the
 hosts.

 The equilibrium host and parasite population values then follow from eqns (7) and
 (13):

 As mentioned above, k is the parameter of the negative binomial distribution which gives
 an inverse measure of the degree of aggregation or contagion of the parasites within the
 hosts.

 The equilibrium host and parasite population values then follow from eqns (7) and
 (13):
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 FIG. 5. Model A-overdispersed parasite distributions. Graphs (a) and (b)-the solid lines
 denote the boundaries in the k and a parameter space which separate regions in which
 parameter values give rise to globally stable parasite regulated host equilibria (unshaded
 areas), and unregulated host population growth (shaded areas). These boundaries are
 shown in terms of k and a for two values of A. In graph (a) A = 6-0, and in (b) A = 20-0. In
 both (a) and (b), a = 3-0, b = 1 0, # = 0-1, Ho = 10-0. In graphs (c), (d) and (e) the solid
 lines denote the equilibrium size of the host population, H* (c) and (d)), and the mean
 parasite burden, P*/H* (e) for various values of k and a. The shaded regions denote areas
 in which the parameter values of the model lead to unregulated host population growth. The
 parameter values are as indicated for graphs (a) and (b) except that in (c), a = 0-5, A = 6-0,

 and in (d), and (e), k = 2-0, A = 6.0.
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 FIG. 5. Model A-overdispersed parasite distributions. Graphs (a) and (b)-the solid lines
 denote the boundaries in the k and a parameter space which separate regions in which
 parameter values give rise to globally stable parasite regulated host equilibria (unshaded
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 lines denote the equilibrium size of the host population, H* (c) and (d)), and the mean
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 parameter values are as indicated for graphs (a) and (b) except that in (c), a = 0-5, A = 6-0,

 and in (d), and (e), k = 2-0, A = 6.0.

 This equilibrium point can exist only if

 A > .u+a+oe+(a-b)(k+ 1)/k. A > .u+a+oe+(a-b)(k+ 1)/k. (16) (16)
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 The stability of the equilibrium is studied in Appendix 3, where it is shown that distur-
 bances undergo damped oscillations back to the equilibrium population values, provided
 only the aggregation parameter k is finite and positive. (In the limit k-+o, which
 corresponds to the Poisson limit, the damping times becomes infinitely large, and we
 recover the neutral stability of the Basic model.)

 Thus if eqn (16) is satisfied, the host population is effectively regulated by the parasites.
 Figure 4 illustrates the dynamical behaviour of such a system.

 If the inequality (16) is not fulfilled, then (as discussed previously) the host population
 grows exponentially until it encounters environmental carrying capacity limitations. The
 parasite population will also grow exponentially but at a slower rate than the hosts, and
 thus the mean parasite burden decreases in size.

 The criterion (16) which determines the boundary between host populations that can
 be regulated by their parasites, and those that cannot, is illustrated in Fig. 5.

 Figure 5(a) and (b) are two slices through the k- a parameter space, for two different
 values of A (and other quantities held constant); they show that as i, the production rate
 of transmission stages, increases a larger range of k and A values lead to a parasite
 regulated host equilibrium. When the parasite's distribution is highly overdispersed
 (k-+O), regulation is difficult to achieve for any value of the rate of parasite induced host
 mortalities (a). As a increases, the degree of overdispersion must decrease, otherwise too
 many parasites are lost due to parasite induced host mortalities.

 An indication of the influence of o and k on the size of the equilibrium host and para-
 site populations, H* and P*, is given in Figure 5 (c), (d) and (e). Figure 5 (d) appears
 odd at first glance: an increase in the rate of parasite induced host mortality
 makes for an increase in H*. The reason is that those hosts which die from parasite
 infection harbour above average parasite burdens; such deaths thus have relatively
 more effect on the parasite population than on the host population. As x increases,
 this effect becomes increasingly pronounced, leading to a decrease in the mean
 parasite burden per host (Fig. 5(e)) and an increase in H* (Fig. 5(d)). Eventually,
 for a sufficiently large, the parasites can no longer regulate the host population. Notice
 also that as k increases, the parasites are spread more evenly, and hence the net rate of
 loss of hosts due to parasite induced mortality rises; i.e. H* decreases as k increases
 (Fig. 5(c)).

 Quantitative estimates of the parameters in eqn (16) are not easy to come by for
 natural populations.

 Table 2 lists reported values of k for a variety of parasite species. The numbers show
 that many parasites, particularly helminths, are highly overdispersed within their host
 populations, the majority of values tending to be less than 1.0. This typically high degree
 of overdispersion tends to confer stability; it also suggests that net losses from host
 populations due to parasite infections may be low, since only a few hosts harbour heavy
 infections. This is a result of the first importance, to which we will return in the conclud-
 ing discussion.

 The rate of production of transmission stages by the parasite, i, must exceed the sum
 of the hosts reproductive rate, a, plus the host intrinsic growth rate multiplied by (k + 1)/k,
 plus It and c. Particularly if k is small, this requires that the parasite must have a much
 higher reproductive rate than the host, which accords with traditional beliefs. Repro-
 ductive rates of parasitic species, particularly protozoa and helminths, are invariably
 high and almost without exception very much greater than the host's potential for
 reproduction. For example, at the top end of the spectrum lie certain namatode species
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 TABLE 2. Values of the negative binomal parameter k observed in natural populations of hosts and parasites TABLE 2. Values of the negative binomal parameter k observed in natural populations of hosts and parasites

 Taxonomic group of parasite

 Platyhelminthes, Monogenea
 Digenea
 Cestoda

 Nematoda

 Taxonomic group of parasite

 Platyhelminthes, Monogenea
 Digenea
 Cestoda

 Nematoda

 Parasite species Parasite species

 Diclidophora denticulata (Olsson)
 Diplostomum gasterostei (Williams)
 Caryophyllaeus laticeps (Pallas)
 Schistocephalus solidus (Muller)
 Chandlerella quiscoli (von Linstow)

 Toxocara canis (Werner)

 Ascaridia galli (Schrank)
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 Caryophyllaeus laticeps (Pallas)
 Schistocephalus solidus (Muller)
 Chandlerella quiscoli (von Linstow)

 Toxocara canis (Werner)

 Ascaridia galli (Schrank)

 Acanthocephala Polymorphus minutus (Groeze)
 Echinorhynchus clavula (Dujardin)

 Arthropoda Copeopoda Lepeophtheirus pectoralis (Muller)
 Chondracanthopsis nodosus (Muller)
 Chondracanthopsis nodosus

 Arachnida Ixodes trianguliceps (Birula)
 Liponysue bacoti (Hirst)

 Insecta Pediculus humanus capitis (L)

 Acanthocephala Polymorphus minutus (Groeze)
 Echinorhynchus clavula (Dujardin)

 Arthropoda Copeopoda Lepeophtheirus pectoralis (Muller)
 Chondracanthopsis nodosus (Muller)
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 Arachnida Ixodes trianguliceps (Birula)
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 Insecta Pediculus humanus capitis (L)

 Host species

 Gadus virens (L.)
 Gasterosteus aculeatus (L.)
 Abramis brama (L.)
 Gasterosteus aculeatus

 Culicoides crepuscularis
 (Malloch)

 Vulpes vulpes (L.)

 Gallus gallus (L.)

 Gammarus pulex (L.)
 Gasterosteus aculeatus (L.)
 Pleuronectes platessa (L.)
 Sebastes marinus (L.)
 Sebastes mentella (L.)
 Apodemus sylvaticus (L.)
 Rattus rattus (L.)
 Homo sapiens
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 Range of k
 values

 Range of k
 values

 Author(s) Author(s)

 0.7 Frankland (1954)
 0-1-0-7 Pennycuick (1971)
 0-1-0-5 Anderson (1974a)
 0-7-2-4 Pennycuick (1971)
 0-5 Schmid &

 Robinson (1972)
 0-5 Watkins & Harvey

 (1942)
 0-7 Northam &

 Rocha (1958)
 0-6-3-1 Crofton (1971a)

 0-07-0-5 Pennycuick 1971)
 0-3-10-0 Boxhall (1974)

 0-6 Williams (1963)
 0-2 Williams (1963)

 0-04-0-4 Randolph (1975)
 0-2 Cole (1949)
 0-14 Buxton (1940)
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 such as Haemonchus contortus (Rudolphi), a parasite of sheep, which is capable of
 producing 10 000 eggs per day (Crofton 1966).
 Estimates of a, the rate of parasite induced host mortalities, are more difficult to

 extract from the literature. As a rather broad generalization is appears to be widely
 accepted in the parasitological literature that the majority of protozoan and helminth
 parasites do not cause the death of many hosts in natural populations. However, where
 quantitative rate estimates are available from laboratory experiments (Fig. 1), it appears
 as though many parasite species have the capability of causing high host death rates.
 This is particularly apparent in parasite life cycles which utilise invertebrate hosts.
 Infected individuals within a host population have extremely poor survival characteristics
 when compared with uninfected hosts (Fig. 6). In natural populations, counter to popu-
 lar opinion, parasites may play a crucial role in regulating the size of their host popula-
 tions due to high parasite induced host mortality rates, coupled with small k values.
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 FIG. 6. Some examples of the survival characteristics of infected hosts as compared with
 uninfected hosts. (a) Snail host Australorbis glabratus (Say) infected with larval stages of the
 digenean Schistosoma mansoni (Sambon) (data from Pan 1965); (b) snail host Lymnaea
 gedrosina infected with larval stages of the digenean Ornithobilharzia turkestanicum (data
 from Massoud 1974); (c) mosquito Aedes aegypti (L.) infected with microfilariae of the
 nematode Dirofilaria immitis (Leidy) (data from Kershaw, Lavioipierre & Chalmers 1953);
 (d) snail host Australorbis glabratus infected with the nematode Daubaylia potimaca (Chit-
 wood and Chitwood) (data from Chernin 1962) (solid lines-uninfected hosts, stippled lines

 -infected hosts).

 A present, however, it is difficult to substantiate this conjecture, because of the diffi-
 culty in assessing o in natural populations. Our model suggests that a rough, indirect
 estimate of c may be obtained from eqn (14):

 a = (a-b)(H*/P*). (17)

 That is, the rate c is equal to the natural intrinsic growth rate of the host population
 divided by the mean parasite burden P*/H*. This is a useful result in itself. It suggests
 that when overdispersed burdens of parasites per host, with small mean, are observed in
 the field, then x is likely to be relatively high.
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 from Massoud 1974); (c) mosquito Aedes aegypti (L.) infected with microfilariae of the
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 (d) snail host Australorbis glabratus infected with the nematode Daubaylia potimaca (Chit-
 wood and Chitwood) (data from Chernin 1962) (solid lines-uninfected hosts, stippled lines

 -infected hosts).

 A present, however, it is difficult to substantiate this conjecture, because of the diffi-
 culty in assessing o in natural populations. Our model suggests that a rough, indirect
 estimate of c may be obtained from eqn (14):

 a = (a-b)(H*/P*). (17)

 That is, the rate c is equal to the natural intrinsic growth rate of the host population
 divided by the mean parasite burden P*/H*. This is a useful result in itself. It suggests
 that when overdispersed burdens of parasites per host, with small mean, are observed in
 the field, then x is likely to be relatively high.
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 Underdispersed distributions

 As mentioned earlier, parasites may occasionally be under dispersed, i.e. more evenly
 distributed than if they were independently randomly distributed among hosts. Such
 underdispersed distributions may be described by a positive binomial, with a parameter
 k' that is inversely proportional to the degree of under-dispersion: in the limit k' -0, all
 hosts carry identical parasite burdens.

 As shown in Appendix 1, the appropriate version of eqn (8) is obtained by simply
 replacing k with -k' in eqn (14). It is easily shown (see Appendix 3) that such a system,
 which amounts to model A with a negative value of k, can have no stable equilibrium.

 In short, an overdispersed pattern of parasite numbers per host can enable the para-
 sites stably to regulate the host population. The exact form of the pattern of overdis-
 persion is immaterial; the above analysis based on the negative binomial can be repeated
 for other qualitatively similar distributions such as the Neyman type A, with the same
 conclusion.

 MODEL B: NONLINEAR PARASITE INDUCED MORTALITIES

 So far, the parasite induced host mortality rate has been taken to be linearly proportional
 to the parasite burden (cf. Figs l(a)-(c)). Often, however, the relationship between host
 death rate and parasite burden is of a more severe form, as indicated in Fig. l(d)-(f).

 In model B, we examine the dynamical consequences of a more steeply density depen-
 dent parasite induced death rate. For specificity, we typify such steeper density dependence
 by assuming that the parasite induced mortality rate varies as the square of the number of
 parasites in a host, i.e. as ci2. By recapitulating the arguments that led to eqns (7) and
 (8), we have now

 dH/dt = (a- b)H - HE(i2) (18)

 dP/dt = APH/(Ho + H) - (1 + b)P - HE(i3). (19)

 The exact form of the average values of i2 and i3 depends on the parasite distribution
 among hosts. In Appendix 3, we indicate the equilibrium population values, and their
 stability character, under the various assumptions that the parasites are overdispersed
 (negative binomial), independently randomly distributed (Poisson), and underdispersed
 (positive binomial).

 The nonlinearly severe parasite induced host mortality has two consequences, both of
 which are illustrated by Fig. 7.

 On the one hand, the effect enhances the dynamic stability of an equilibrium point,
 provided one exists. Thus if the parameters are such that equilibrium populations H* and
 P* exist, then this point is stable for overdispersed or Poisson parasite distributions
 (the latter in contrast to the Basic model), and also for underdispersed distributions so
 long as k' is not too small (in contrast to model A, where all such underdispersed cases
 are unstable).

 On the other hand, the domain of parameter space for which the equilibrium exists
 (i.e. satisfying the analogue of eqns (12) and (16)) is always smaller for model B than for
 the corresponding model A. This can be seen by comparing Figs 5 and 7.

 All this can be explained intuitively. Compared with model A, the more steeply severe
 parasite induced host mortality makes it relatively harder for the parasite to check the
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 host population's intrinsic propensity to growth. But if it can do so, this density depen-
 dence results in relatively faster damping of perturbations.

 MODEL C: DENSITY DEPENDENCE IN PARASITE POPULATION GROWTH

 The growth of a parasite population within a single host is often constrained by the
 influence of density dependent death or reproductive processes. (see Anderson 1976c).
 Such regulatory mechanisms may be due to either parasite induced host immunological
 responses or intraspecific competition for finite resources such as space or nutrients
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 Fwithin. 7. Model B- non-linear parasite induced mortality rates. The influence of the distri-
 bution pattern of the numbers of parasites per host, and the rate of parasite induced host
 mortalities (a) on the numerical size of the host equilibrium population and its global
 stability properties. The solid line denotes the values of H*, while the unshaded regions
 denote areas of parameter values in which the host population growth is regulated by the
 parasite and globally stable equilibria arise. The lightly shadepende areas define regions where
 the parasite fails to regulate the growth of the host population; the darkly shaded areas
 define regions whereocesses on the parasite regulates host population growth but the equilibria
 generated are unstable. In (a) and (b), the parasites are underdispersed following the
 positive binomial model. The value of k' is 6e00 in (a) and 20q0 in (b); in graphs (c) the para-
 sites are randomly distributed (Poisson model); in (d)band (e) the parasites are overdis-
 persed following the negative binomial modeYl where in (d) k = 8.0 and in (e) k = 2.0 (a =

 3'0, b = 10, ,u = 0.1, Ho = 10-0, A = 6 .0).

 within or on the host. The severity of an immunological response by the host is usually
 functionally related to the degree of antigenic stimulation received (number of parasites).
 Such responses, whether humoral or cell mediated, tend to increase the death rate of a
 parasite population and/or reduce its reproductive potential (Anderson & Michel
 1977; Bradley 1971). Some examples of density dependent parasite death rates for
 helminth species in vertebrate hosts are illustrated in Fig. 8.

 The influence of such processes on the dynamical properties of host-parasite interac-
 tions may be examined by appropriate modification of the basic eqns (7) and (8). For
 specificity, we assume the density dependence to be such that natural parasite mortality
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 1977; Bradley 1971). Some examples of density dependent parasite death rates for
 helminth species in vertebrate hosts are illustrated in Fig. 8.

 The influence of such processes on the dynamical properties of host-parasite interac-
 tions may be examined by appropriate modification of the basic eqns (7) and (8). For
 specificity, we assume the density dependence to be such that natural parasite mortality
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 occurs at a rate ui2, in hosts harbouring i parasites. The model is then eqn (7) for dH/dt,
 together with

 dP/dt = APH/(Ho + H)- bP - (t + a)HE(i2). (20)

 Apart from this modification, the model is exactly as for model A: again the detailed
 form of eqn (20) will depend on the pattern of parasite distribution.

 The dynamical behaviour of model C is elucidated in Appendix 3. For a negative
 binomial distribution (with parameter k), equilibrium host and parasite populations
 exist only if

 A > b+ +a+(a + u)(a- b)(1 + k)/(ak). (21)

 (a) / (b)
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 FIG. 8. Some examples of the relationship between the instantaneous parasite 'natural'
 death rate (u) and parasite density (i) within individual hosts. The solid lines are the least
 squares best fit linear models of the form , (i) = ad+bi (a) Calves infected with the gut
 nematode Ostertagia ostertagi (Stiles); a = 0-0171, b = 0.0308x 10-5 (rate/day) (data
 from Anderson & Michel 1977). (b) Chickens infected with the fowl nematode
 Ascaridia lineata (Schneid); d = 0-0856, b = 0-00019 (rate/day) (data from Ackert,
 Graham, Xolf & Porter 1931). (c) Rats infected with the tapeworm Hymenolepis diminuta
 (Rud); a = 0.00636, b = 0-00032 (rate/day) (data from Hesselberg & Andreassen 1975).
 (d) Rats infected with the nematode Heterakis spumosa (Schneider); a = 0-0265, ^ =

 0-000037 (rate/day) (data from Winfield 1932).

 For independently randomly distributed parasites, the Poisson result follows as the
 limit k-- c in eqn (21); for underdispersion (positive binomial with parameter k') one
 simply replaces k with -k' in eqn (21). If the equilibrium exists, it is stable for overdis-
 persed or Poisson distributions, and also for underdispersion provided the parameter
 k' is not too small (explicitly, provided k' > (o +u)/u).

 The general pattern of relationship between model C and model A is similar to that
 between model B and model A. As is made clear by the comparison between eqns (16)
 and (21), i must be relatively larger if an equilibrium is to exist (i.e. if parasites are to be
 able to check host population growth) in model C; this is particularly marked if over-
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 FIG. 9. Model C-density dependent constraints on parasite population growth; The solid
 lines enclose unshaded regions in which the parameter values lead to parasite regulated
 host population equilibria which are globally stable. These boundaries are shown in terms of
 /I and a for various patterns of dispersion of parasite numbers per host; the lightly shaded
 regions indicate the parameter values which give rise to unregulated host population growth.
 In the darkly shaded areas the parasite regulates host population growth but the equilibria
 produced are unstable. (a) Positive binomial, k' = 6-0; (b) positive binomial, k = 20-0; (c)
 Poisson; (d) negative binomial, k = 4.0; (e) negative binomial, k = 1.0; (a = 3.0, b = 1.0,

 Ho = 10-0, A = 6-0).
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 FIG. 10. Model C-density dependent constraints on parasite population growth. (a) The
 influence of the parameter a on the numerical size of the host population equilibrium H*
 (parasites randomly distributed-Poisson model); the shaded region defines parameter
 values which lead to unregulated host population growth, while in the unshaded regions
 the parasite regulated host equilibria are globally stable. (b) The influence of the rate of
 parasite reproduction, i, on H*; the shaded and unshaded regions are as defined for (a);
 (a = 3'0, b = 1.0, , = 0-1, Ho = 10-0, A = 6.0, a = 0'5).
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 238 Regulation and stability of host-parasite interactions. I

 dispersion is high (small k). But if the equilibrium can exist, for given k, it is more stable
 in model C than in model A.

 These remarks are further bourne out by Figs 9 and 10. The stable domain in the u,c
 parameter space increases in size when the pattern of dispersion of the parasites within
 the host population moves from regular to random (Fig. 9(a)-(c)), and then decreases
 as the pattern changes from random to aggregated (Fig. 9 (c)-(e)). When overdispersion
 is marked (k small), as is the case for many parasitic species (Table 2), the region of
 parameter space in which the parasite regulates the host population is rather small (Fig.
 9(e)). The model's predictions therefore suggest that when the parasite population is
 tightly controlled by density dependent constraints (i.e. when # is large) and parasites are
 overdispersed within the host population, other factors than parasite induced host
 mortalities will tend to stabilise and regulate host population growth.
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 FIG. 11. Some examples of functional relationships between the rate of production of
 parasite transmission stages (A) and the parasite population density (i) within individual
 hosts; the dots are observed points while the solid lines are fitted by eye. (a) Laboratory mice
 infected with the tapeworm Hymenolepis nana (Siebold) (data from Ghazal & Avery 1974);
 (b) calves infected with Ostertagia ostertagi (data from Michel 1969); (c) sheep infected

 with the fluke Fasciola hepatica (data from Boray 1969).

 Mammalian hosts which possess well developed immunological responses to parasitic
 invasion, creating tight density dependent controls on parasite population growth, may
 well fall into this category.
 When parasites are independently randomly distributed, however, the main effect of
 the density dependence of model C is to help stabilize the system. In the case of Poisson
 distributed parasites, a further insight, concerning the influence of a upon H*, is illustra-
 ted in Fig. 10(a): too high or too low values of a lead to exponential runaway of the host
 population.

 The above discussion has been for density dependence in the natural parasite mortality
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 rate. For many host-parasite associations, the 'fecundity' A is also known to be a function
 of the parasite population density due, as in the case of the death rate, to either immuno-
 logical processes or intraspecific competition. Some quantitative examples of such
 responses are shown in Fig. 11 for helminth parasites of vertebrates. The inclusion of such
 processes in the basic model leads to qualitatively similar dynamical properties to those
 outlined above for density dependent parasite death rates.

 CONCLUSIONS

 Our population models of host-parasite interactions are all characterized by the central
 assumption that parasites cause host mortalities. In particular, we have assumed that
 the net rate of such mortalities is related to the average parasite burden of the members of
 a host population, and therefore to the statistical distribution of the parasites within a
 host population. We regard the inducement of host mortalities and/or reduction in host
 reproductive potential as a necessary condition for the classification of an organism as
 parasitic.

 Species which exhibit such characteristics may in certain circumstances play an impor-
 tant role in regulating or controlling the growth of their host population. In such cases,
 the parasite will play an analogous role to a predator which suppresses the growth of its
 prey population. We have demonstrated that three specific categories of population
 processes are of particular significance in stabilizing the dynamical behaviour of a host-
 parasite interaction and enhancing the regulatory influence of the parasite.

 The first of these categories of population processes concerns the functional relation-
 ships between the rate of parasite induced host deaths and the parasite burden of indi-
 vidual hosts. It is interesting to compare the significance of these relationships on the
 dynamical properties of a given host-parasite association, with the role played by
 functional responses in predator-prey, and host-insect parasitoid interactions (Solomon
 1949; Holling 1959; Hassell & May 1973). The presence of a complex sigmoid function
 response between the attack rate of a predator and the density of prey (type III response
 in the terminology of predator-prey interactions as recently reviewed by Murdoch &
 Oaten 1975) may, or may not, have a stabilizing influence on the dynamics of such
 interactions. There will be a range of prey densities over which the death rate of the prey
 imposed by the predator is an increasing function of prey density and hence such a
 response will be stabilizing since it acts in a density dependent manner. However, in
 contrast, if the prey death rate is constant over a wide range of prey densities (as in type
 II responses), then the predator will not play a major stabilizing role in the dynamics of
 the prey. In such cases other constraints, such as intraspecific competition for finite
 resources amongst the prey population, will stabilise the interaction.

 We have demonstrated, in the case of host-parasite associations, that when the para-
 sites are randomly distributed within the host population, a linear relationship between
 host death rate and parasite burden gives rise to the pathological condition of neutral
 stability (Basic model). If however, the rate of parasite induced host mortalities is an
 increasing function of parasite burden, perhaps following a power law or exponential
 form, random distributions of parasites may lead to globally stable equilibria where the
 parasite is effectively regulating the growth of its host population (model B). Thus, for a
 given distribution pattern of parasites, certain types of functional response may stabilize
 the dynamics, while others lead to instabilities as in the case of predator-prey associa-
 tions.
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 The second category of population processes, which influence the regulatory role of
 parasites, concerns the statistical distribution of parasite numbers per host. When the
 rate of parasite induced host mortalities is linearly dependent on the number of parasites
 harboured, we have demonstrated that parasites may regulate host population growth
 provided they exhibit an overdispersed pattern of distribution within the host population
 (model A). The accumulating information in the literature on the overdispersed charac-
 ter of parasite distributions in natural populations of hosts (vide Table 2) lends support to
 the importance of this insight. The stabilizing influence of parasite contagion is somewhat
 analogous to the influence of aggregated distributions of insect parasitoids on the stability
 of host-parasitoid associations (Hassell & May 1974). Parsitoid aggregation was shown,
 in certain circumstances, to stabilize models which otherwise would have been quite
 unstable.

 The third category of processes which enhance the regulatory role played by a parasite
 act within each individual parasite population (or subpopulation) harboured in each
 member of the host population. Model C demonstrated that density dependent con-
 straints on parasite population growth, caused either by intraspecific competition for
 finite resources or immunological attack by the host, can in the absence of overdispersion
 or non-linear functional responses stabilise the dynamics of an interaction.

 On the other hand, there are features of host-parasite interactions which tend to
 destabilize the system. These are discussed in the following paper (May & Anderson
 1978), and a general review of pertinent field and laboratory data on host parasite
 associations is then presented.
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 APPENDIX 1

 This appendix lists the probability generating functions (p.g.f.'s), n(Z), of the probability
 p(i) of observing (i) parasites in a host, for three discrete probability distributions. In
 addition, the expectations of i2 and i3 are outlined for each of the distributions in terms of
 a few parameters such as the mean number of parasites per host, m, and measures of
 overdispersion k and underdispersion k'.

 (a) Positive binomial

 I(Z) = (q - pZ)k' (1.1)

 where p is the probability of a successful infection occurring, and q = 1-p. The para-
 meter k' represents the maximum number of parasites a host can harbour (see Anderson
 1974b).

 The mean and variance of this distribution are

 m E(i) = k'p (1.2)

 var(i) = k'pq. (1.3)

 The expectations of i2 and i3 are

 E(i2) = (k'p)2 + k'pq. (1.4)

 that is,

 E(i2) = m2 (k'-l)/k' + m. (1.4a)

 E(i3) = (k'p)3 (k'-l) (k'-2)/k'2 + 3 (k'p)2 (k'-l)/k' + k'p. (1.5)

 (b) Poisson

 nI(Z) = exp {m(Z-1)} (1.6)

 where m is the sole parameter of the distribution and
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 E(i) m (1.7)

 var(i) = m. (1.8)

 The expectations of i2 and i3 are

 E(i2) = m+m (1.9)

 E(i3) = m3 + 3m2 + m. (1.10)

 The Poisson distribution corresponds to the limit k'-+oo(positive binomial), or k-oo
 (negative binomial).

 (c) Negative binomial

 n(z) = (q -p)-k (1.11)

 where p is as defined for the positive binomial, q = 1 +p, and the parameter k is a meas-
 ure which varies inversely with the degree of aggregation of the parasites within the
 host population.
 The mean and variance are given by

 m E(i)= kp (1.12)

 var(i) =kpq. (1.13)

 The expectations of i2 and i3 are

 E(i2) = (kp)2(k + l)/k + kp. (1.14)

 That is,
 E(i2) = m2(k + l)/k + m (1.14a)

 E(i3) = (kp)3(k + 1)(k + 2)/k2 + 3(kp)2(k+ l)/k + kp. (1.15)

 Notice that (as follows from comparison of the defining functions (1.1) and (1.11)) the
 negative binomial results can all be obtained from the positive binomial ones by the
 simple transformation p- -p and k'-+-k, or equivalently, m-m and k' - k. In
 particular, positive and negative binomial expressions for E(i2) are interrelated by k' -
 k.

 APPENDIX 2

 This appendix gives a global account of the stability properties of the Basic model
 defined by eqns (7) and (9).

 The expressions for the equilibrium populations H* and P* are given by eqns (10) and
 (11), and the criterion that this point be biologically sensible (H*>0) is expressed by
 eqn (12).

 For a fully nonlinear discussion of the stability properties of this model, it is sufficient
 to notice that the function

 V(H, P) eaPIH (Ho + H) H - (b ++) p(b-a) > 0 (2.1)

 is a Lyapunov potential for this system (Minorsky 1962), and furthermore that
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 for all t. Thus V is a positive constant, determined by the initial values of H and P; the
 population values H(t) and P(t) will endlessly cycle around some closed trajectory. In
 other words, the Basic model corresponds to a neutrally stable or conservative dynamical
 system, with the consequences discussed in the main text.

 Although the potential V(t) of eqn (2.1) was found by analytical trickery, rather than
 being revealed in a vision, simply writing it down saves space while preserving rigour. Its
 properties may be verified by differentiating to get dV/dt in terms of dH/dt and dP/dt,
 whereupon use of eqns (7) and (9) lead to the central result (2.2).

 APPENDIX 3

 This appendix outlines the analysis of the stability properties of the various host-parasite
 models presented in this paper; similar analysis pertains to those in the tollowing paper
 (May & Anderson 1978).

 With the exception of model B (which involves E(i2) in the equation for dH/dt, and
 E(i3) in that for dP/dt), and model F in the following paper (which involves time delays),
 the models under consideration all have the mathematical form

 dH/dt = c1 H-c2P (3.1)

 dP/dt = P{)H/(Ho + H)-c3 -c P/H}. (3.2)

 Here ci (i = 1,2,3,4,) are constants which depend upon the particular biological assump-
 tions in a given model.

 Specifically, using eqn (1.14a) to express E(i2) in eqns (8) and (20) in terms of P/H and
 k, for a negative binomial distribution of parasites we may tabulate ci for models A and C
 as follows:

 Model A Model C

 c1 =a-b c1 =a-b (3.3)
 c2 = a C2 = a (3.4)
 c3 =b++oa c3 = b+p+ (3.5)
 c4 = {k+ l}/k c4 = {ca +}{k+1}/k. (3.6)

 The corresponding expressions for a Poisson distribution of parasites are obtained by
 putting k- oo, and for a positive binomial by putting k-- k'.
 From eqns (3.1) and (3.2), the equilibrium populations H* and P* are

 P*IH* = cl/c2 (3.7)

 H*= Ho(C3 + C C4/C2)/(/l-C3-C1 C4/C2). (3.8)

 This provides the first important constraint, namely that for a biologically sensible equilib-
 rium to be possible it is required that

 i > c3 + C 4/C2. (3.9)

 A linearized stability analysis of this equilibrium is carried out along standard lines
 (see, e.g. May 1975). Writing H(t) = H* +x(t) and P(t) = P* +y (t), and linearizing by
 neglecting terms of order x2, xy and y2, we get from eqns (3.1) and (3.2)

 dx/dt = c1x-c2y1 (3.10)
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 dy/dt = c5x-(ClC4/c2)y. dy/dt = c5x-(ClC4/c2)y. (3.11) (3.11)
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 Here for notational convenience, c5 is defined as

 c5 = ( o Ho H*/(Ho + H*)2 + C1C4/c2) (Cl/c2). (3.12)

 The temporal behaviour of x(t) and y(t) then goes as exp (At), where the stability-
 determining damping rates (or eigen values) A are given from eqns (3.10) and 3.11) by
 the quadratic equation

 A2+AA+B=0. (3.13)
 Here

 A- (c/lc2)(c4-c2) (3.14)

 B C2C5-cc4/c2- cAHoH*/(Ho + H*)2. (3.15)

 The requirement for neighbourhood stability is that the real part of both eigen values A
 be negative; the necessary and sufficient condition for this to be so is given by the Routh-
 Hurwitz criterion A>0 and B>0. From eqn (3.15) we see that B is always positive.
 Therefore the equilibrium point will be locally stable if A > 0, that is if

 c4-c2 > 0. (3.16)

 This provides the second important constraint, determining the stability character of the
 equilibrium point (if it exists).
 Since the above models are modifications of the globally neutrally stable Basic model,

 it is reasonable to assume that if they are locally stable, they are globally stable; and
 conversely that if they are locally unstable, they are globally unstable. A rigorous proof
 follows from the observation that, for the general pair of eqns (3.1) and (3.2), the func-
 tion

 V = {exp (c2P/H)} (Ho + H)P- c~ H{(c - 3 -4/C2

 is a global Lyapunov function. That is, V>0 (provided the initial host and parasite pop-
 ulations are positive), and

 dV/dt = (c2-C4) (c - C2P/H)2 C2 1

 as may be verified by differentiating V(H,P), and using eqns (3.1) and (3.2) to express dH/dt
 and dP/dt. Local stability requires c4 >c2 (see eqn (3.16)), whence dV/dt<O, connoting
 global stability. Conversely local instability requires c4 <c2, whence dV/dt > 0, connoting
 global instability. The structurally unstable razor's edge of c4 = c2 gives both local
 (eqn (3.16)) and global (dV/dt = 0) neutral stability, as discussed more fully in Appendix
 2.

 In brief, local and global stability properties march together in these models.
 We now proceed to indicate how the basic criteria (3.9) and (3.16) may be applied to

 the various models to derive the dynamical properties discussed in the main text, and
 illustrated in Figs 5, 6, 7, 9 and 10.

 Model A

 For a negative binomial distribution of parasites, the expressions (3.3) through (3.6)
 may be substituted in eqn (3.9) to arrive at the criterion for an equilibrium solution to be
 possible. This expression is given and discussed as eqn (16) in the main text. The stability
 criterion (3.16) here reads.
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 Here for notational convenience, c5 is defined as
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 the quadratic equation

 A2+AA+B=0. (3.13)
 Here

 A- (c/lc2)(c4-c2) (3.14)

 B C2C5-cc4/c2- cAHoH*/(Ho + H*)2. (3.15)

 The requirement for neighbourhood stability is that the real part of both eigen values A
 be negative; the necessary and sufficient condition for this to be so is given by the Routh-
 Hurwitz criterion A>0 and B>0. From eqn (3.15) we see that B is always positive.
 Therefore the equilibrium point will be locally stable if A > 0, that is if

 c4-c2 > 0. (3.16)
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 Since the above models are modifications of the globally neutrally stable Basic model,
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 as may be verified by differentiating V(H,P), and using eqns (3.1) and (3.2) to express dH/dt
 and dP/dt. Local stability requires c4 >c2 (see eqn (3.16)), whence dV/dt<O, connoting
 global stability. Conversely local instability requires c4 <c2, whence dV/dt > 0, connoting
 global instability. The structurally unstable razor's edge of c4 = c2 gives both local
 (eqn (3.16)) and global (dV/dt = 0) neutral stability, as discussed more fully in Appendix
 2.

 In brief, local and global stability properties march together in these models.
 We now proceed to indicate how the basic criteria (3.9) and (3.16) may be applied to

 the various models to derive the dynamical properties discussed in the main text, and
 illustrated in Figs 5, 6, 7, 9 and 10.

 Model A

 For a negative binomial distribution of parasites, the expressions (3.3) through (3.6)
 may be substituted in eqn (3.9) to arrive at the criterion for an equilibrium solution to be
 possible. This expression is given and discussed as eqn (16) in the main text. The stability
 criterion (3.16) here reads.

 o/k > 0 o/k > 0  (3.17) (3.17)
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 which is always satisfied; the equilibrium point is necessarily stable.
 A Poisson distribution of parasites (as in the Basic model) is obtained as the limit koo

 -, thus producing eqn (12) as the criterion for an equilibrium point to exist. In this case,
 c4 = c2 = o, so that A=0 and the eigen value equation (3.13) becomes A2+B = 0, or

 A=1-B. (3.18)

 That is, both eigen values are purely imaginary, leading to neutral stability in the linear-
 ised analysis; this, of course, is the local version of the global result established in
 Appendix 3.

 For a positive binomial distribution, the stability criterion (3.16) becomes

 -o/k' >0 (3.19)

 which cannot be satisfied. This model is ineluctably unstable.

 Model C

 For an overdispersed distribution, we substitute the appropriate expressions (3.3)
 through (3.6) into eqn (3.9) to arrive at eqn (21) for the criterion for an equilibrium point
 to be possible. The stability criterion (3.16) is here

 {( + (k + 1)}/k > 0 (3.20)

 which is always satisfied.
 For a Poisson distribution, putting k-+oo in eqn (21) produces the criterion for an

 equilibrium to exist. Similarly, putting k-oo in eqn (3.20) gives the stability condition
 t>0, which always holds.
 For an underdispersed distributions, we put k -k' in eqn (21) to get the condition

 for equilibrium to exist; see Fig. 10. By likewise putting k - k' in the stability criterion
 (3.20), we see that such anequilibrium will be stable if

 #k'-y -ac > 0. (3.21)

 Stability is helped by high natural parasite mortality compared with parasite induced
 host mortality (i.e. by t large compared with x), and hindered by high underdispersion
 (i.e. by small k').

 Model B

 In this model, the equation for dH/dt involves E(i2) and thence a term in P2/H, and
 the equation for dP/dt involves E(i3) and thence a term in P3/H2. Consequently these
 host-parasite equations are not exactly of the form of eqns (3-1) and (3-2), and require
 separate treatment.

 For a negative binomial distribution of parasites, use of the expressions (1.14) and
 (1.15) for E(i3) and E(i2) in eqns (18) and (19), respectively, leads to

 dH/dt = (a- b)H - P- a{(k + 1)/k}P21H, (3.22)

 dP/dt = P{IHI(Ho + H) - ( + b + o) - 3c{k(+ 1)/k}PH - a{(k + 1)(k + 2)/k2}P2/H2}.
 (3.23)

 As ever, the corresponding equations for a Poisson distribution are obtained as the
 limit k - oo, and for a positive binomial by the substitution k-- k'.
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 (3.23)

 As ever, the corresponding equations for a Poisson distribution are obtained as the
 limit k - oo, and for a positive binomial by the substitution k-- k'.

 246 246

This content downloaded from 
�������������152.37.72.219 on Wed, 13 Oct 2021 11:16:50 UTC������������� 

All use subject to https://about.jstor.org/terms



 ROY M. ANDERSON AND ROBERT M. MAY ROY M. ANDERSON AND ROBERT M. MAY

 The equilibrium mean parasite burden per host, m* = P*/H*, follows from eqn
 (3.22):

 m* = {k/(k + 1)}[{1 + 4(a - b)(k + l)/(kc)} - 1]. (3.24)

 It then follows from eqn (3.23), after some tedious algebraic manipulations, that the
 equilibrium host population is

 H* = HoH/( - ), (3.25)

 with C defined for convenience as

 C = , + a + o + 2(a - b)lk + {(2k + 1)/k}xm* (3.26)

 A biologically sensible equilibrium is possible only if

 A> . (3.27)

 This relation among the parameters is illustrated in Fig. 7; remember that for a Poisson
 distribution the above equations are to be read with k-+ oo, and for a positive binomial
 with k- - k'.

 The stability of such an equilibrium point is determined by a linearized stability
 analysis of the kind described above (and, e.g. in May 1975). Linearizing eqns (3.22) and
 (3.23) about the equilibrium point defined by eqns (3.24) and (3.25), we eventually
 obtain the quadratic eigenvalue equation (3.13), where the coefficients A and B are

 A = om*{k(2k + 3) +4(k + )m*}/k2, (3.28)

 B = oc{1 +2m*(k + 1)/k}{HoP*/(Ho + H*)2}. (3.29)
 From eqn (3.24) it follows that B >0 for all positive m*.

 Clearly A>0 for overdispersed or Poisson (k-+oo) distributions, so their equilibrium
 points are stable. For underdispersed distributions (positive binomial, k-+-k'), the
 stability condition A>0 leads to the requirement that k'> 1.5 and

 4m* < k'(2k'- 3)/(k'- 1). (3.30)

 Thus underdispersed distributions can have stable equilibria, provided the mean parasite
 burden is relatively low (small m*) and the underdispersion is not pronounced (large
 k'): Fig. 7 bears out these remarks.

 REFERENCES TO APPENDICES

 Anderson, R. M. (1974). An analysis of the influence of host morphometric features on the population
 dynarius of Diplozoon paradoxom (Nordmann, 1832). Journal of Animal Ecology, 43, 873-87.

 May, R. M. (1975). Stability and Complexity in Model Ecosystems (2nd edn). Princeton University Press,
 Princeton.

 May, R. M. & Anderson, R. M. (1978). Regulation and stability of host-parasite interactions: II. Destabil-
 izing processes. Journal of Animal Ecology, 47, 249-67.
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