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SUMMARY

We studied the effects of environment- (habitat, season) and host-related (sex, body mass) factors on the occurrence of
four species of lice (Insecta:Phthiraptera:Anoplura) on six rodent species (Rodentia:Muridae). We asked how these
factors influence the occurrence of lice on an individual host and whether different rodent–louse associations demonstrate
consistent trends in these effects. We found significant effects of at least one environment-related and at least one host-
related factor on the louse occurrence in five of six host–louse associations. The effect of habitat was significant in two
associations with the occurrence of lice being more frequent in lowland than in mountain habitats. The effect of season
was significant in five associations with a higher occurrence of infestation during the warm season in four associations
and the cold season in one association. Host sex affected significantly the infestation by lice in three associations with a
higher frequency of infestation in males. Host body mass affected the occurrence of lice in all five associations, being
negative in wood mice and positive in voles. In conclusion, lice were influenced not only by the host- but also by
environment-related factors. The effects of the latter could be mediated via life history parameters of a host.
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INTRODUCTION

Parasitic organisms are characterized by a ‘dual’
environment. On the one hand, this environment is
represented by their hosts that provide parasites
with both food resources and a place for living,
mating and reproducing. On the other hand, it is
represented by abiotic factors surrounding the
hosts. This is especially true for ectoparasitic arthro-
pods that are strongly affected by the off-host
environment (see Marshall, 1981 for review).
However, duration of a contact with a host varies
among taxa of ectoparasitic arthropods. Based on
this duration, Lehane (2005) proposed to distinguish
temporary, periodic and permanent ectoparasites.
Temporary ectoparasites are largely free-living and
visit a host for enough time to take a blood meal
(e.g. mosquitos). Periodic ectoparasites spend con-
siderably longer time on a host than is required
merely to obtain a blood meal but nevertheless
spend a significant amount of time off-host (e.g.

most fleas and gamasid mites). Permanent ectopara-
sites spend their entire life on a host which thus rep-
resents their ultimate habitat (lice).
Obviously, the relative effects of factors associated

with the abiotic environment and factors associated
with the hosts per se on distribution of ectoparasites
are expected to differ among the three categories.
Temporary ectoparasites are affected mainly by the
abiotic environment, permanent ectoparasites
mainly by the host-related factors and periodic para-
sites equally by both. These expectations were
largely supported by many studies of temporary
(e.g. Jore et al. 2014) and periodic (e.g. Linardi
and Krasnov, 2013) ectoparasites. In contrast,
studies of the environment- and host-related effects
on distribution of permanent ectoparasites such as
sucking lice (Insecta: Anoplura) are rare (but see
Balashov et al. 2002). In fact, the majority of
studies on sucking lice (apart from studies of lice
parasitic on humans) are either taxonomical (e.g.
Durden and Eckerlin, 2001; Durden and Timm,
2001; Musser et al. 2010) or present description(s)
of the assemblages of lice recorded on one or more
host species from a defined geographic region (e.g.
Haitlinger, 1983; Durden et al. 1997; Smith et al.
2008; Oguge et al. 2009). Ecological studies of
sucking lice are scarce and unevenly distributed
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among host taxa. For example, and taking aside
studies of lice of high medical and veterinary impor-
tance (those parasitic on humans and domestic
animals), the ecology of lice parasitic on aquatic
mammals (pinnipeds and sea otters; see review in
Leonardi and Palma, 2013) is known better than
the ecology of lice parasitic on small mammals.
Earlier studies that considered the ecology of

sucking lice on small mammals were purely descrip-
tive and presented a narrative rather than formal
analyses of the factors affecting abundance and/or
distribution of lice (e.g. Sosnina et al. 1981). A few
recent studies that analysed these factors usually
focused on a single host species and either single
louse species (e.g. Mize et al. 2011; Archer et al.
2014) or the pooled data on several louse species
(Fernandes et al. 2012) and did not reveal whether
the effects they found represented a general trend.
Here, we studied the relative effects of the environ-
ment- (habitat and season) and host-related (sex
and body mass) factors on the occurrence of louse
infestation in six rodent–louse associations from
Eastern Slovakia. We asked how these factors
influenced the occurrence of lice on an individual
host and whether different rodent–louse associations
demonstrated consistent trends in these effects.
We predicted that the probability of an individual

rodent being infested by lice will be higher in
lowland than in mountain habitats, during warm
rather than cold seasons, in males rather than
females and will either increase or decrease with
increasing body mass. Higher probability of louse
infestation in lowlands as compared with mountains
and during warm as compared to cold seasons was
expected because of the positive effect of higher
temperature on fecundity and rate of development
in lice (see Marshall, 1981 for review). Slovakian
lowlands are, in general, warmer than mountains
(Mazur and Jakal, 1982). In addition, earlier obser-
vations reported higher abundance and prevalence
of lice on rodents during warm seasons (e.g.
Sosnina et al. 1981). Male-bias in louse infestation
was reported for a variety of louse–host associations
(Krasnov and Matthee, 2010; Matthee et al. 2010;
Fernandes et al. 2012) and has been considered as a
manifestation of a commonly observed phenomenon
of male-biased parasitism in small mammals (see
Krasnov et al. 2012 for review). The effect of body
mass was expected due to the correlation between
body mass and age of a rodent. Earlier studies of
age-dependence of non-louse ectoparasites on
rodents demonstrated contrasting patterns of the
effect of host age on parasite abundance and/or
prevalence (either predominantly positive or predo-
minantly negative), being dependent on natural
history parameters of a host species, such as patterns
of post-natal growth and dispersal, spatial distri-
bution and the structure of shelters (Krasnov et al.
2006a; see also Pacala and Dobson, 1988).

In this study, we used data from a broad ectopar-
asitological survey that was aimed to investigate
abundance and distribution of various taxa of
blood-feeding arthropods parasitic on small
mammals. Data on fleas, ticks and gamasid mites
from this survey can be found elsewhere (e.g.
Stanko, 1994; Stanko et al. 2002, 2007; Krasnov
et al. 2006b, 2007, 2010).

MATERIALS AND METHODS

Data collection

Small mammals were sampled and lice were col-
lected during 15 years across Eastern Slovakia.
Mammals were captured using snap-traps following
the same protocol at each of 102 trapping sessions
(see details in Stanko, 1988, 1994). In brief, traps
were distributed in lines of 50 traps with 10 m dis-
tance between the consecutive traps. Trapping ses-
sions (on average, 700 traps per session, ranging
from a total of 100–2000 traps/nights) lasted one to
six nights. In each session, traps were opened in
the late evening, checked early in the morning and
operated, on average, for 7 h. The number of
trapped mammals ranged from eight to 395 per trap-
ping session. Each trapped animal was identified,
sexed, weighed and examined for ectoparasites.
The animal’s fur was combed thoroughly, using a
toothbrush, over a plastic pan and ectoparasites
(lice, fleas, ticks and mites) were carefully collected.
Trapping grids were distributed across two main
habitat types, namely the lowlands (70 trapping ses-
sions) and the mountains (32 trapping sessions).
Lowland habitats were situated at elevations
between 100 and 200 m above sea level. They
included lowland river valleys with floodplain
forests (dominated by Fraxinus angustifolia,
Quercus robur, Carpinus betulus, Salix alba, Salix
fragilis and Populus alba), woodland belts (rep-
resented by 3–8 rows of a poplar, Populus canadensis,
and various shrubs such as Prunus sp., Rosa sp.,
Sambuccus nigra, with herbal floor composed
mainly of Urtica dioica), and agricultural fields
(mainly wheat and maize as well as stubble and
shrubbery dominated by Prunus spinosus, Rosa
canina and Crataegus sp. with sporadic occurrence
of poplar and willow trees). Mountain habitats
were situated at elevations from 300 to 1100 m
above sea level. They included submontane
and montane brook valleys (dominated by Alnus
glutinosae, Alnus incanae, Fagus sylvaticus and
C. betulus), submontane (oak-hornbeam) and
montane (beech and beech-maple) forests, shrub-
bery patches on pastures (P. spinosus, Corylus avel-
lana and R. canina) as well as gardens and orchards
in public green spaces within cities at elevation of
650–750 m above sea level. Mean July and January
air temperatures in the lowlands are 20 and −4 °C,
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respectively; while in the mountains they are 15·5
and −6 °C, respectively (Mazur and Jakal, 1982).
Mean annual amount of rainfall is 550–560 mm in
the lowlands and 800–1000 mm in the mountains
(Mazur and Jakal, 1982).
A total of 9490 individuals belonging to 23 species

of small mammals (rodents and insectivores) were
trapped, of which 2348 individuals were infested
with lice belonging to five species (see Results
section).

Data analysis

We analysed factors affecting the occurrence of lice
separately for each host and each louse species. For
these analyses, we selected only those host–louse
associations in which (a) at least 50 host individuals
were captured and (b) mean louse abundance and
prevalence attained at least 0·10 lice per individual
or 10%, respectively. This resulted in six associations
used in the analyses (see Results section).
We chose to analyse the occurrence rather than

the number of lice on an individual host because
the majority of animals were not infested, thus
resulting in a large number of zeroes in the dataset.
Consequently, our response variable was dichoto-
mous and took a value of either 1 or 0 if an individual
was either infested with at least one louse or not,
respectively. We analysed the response variable
using generalized linear mixed-effects models
(GLMM) with the binomial error and logit-link
function. Categorical independent variables were
habitat (lowland vs mountain), sex, and season
(warm vs cold). We considered 16 April till 15
October as the warm season and 16 October to 15
April as the cold season. In addition, we included
in the models body mass of an individual mammal
(a proxy for age) as a continuous variable. This vari-
able was log-transformed prior to analysis. Because
more than one sample was taken per year, we
included a year of sampling as a random variable in
our models. To fit GLMMs, we used the function
glmer from the package ‘lme4’ (Bates et al. 2014a,
b) implemented in R 3·0 environment (R Core
Team, 2013). First, we ran the models with all
fixed effects, the interactions between season and
either sex or habitat, and a random effect (a year of
sampling). We included (a) the interaction between
sex and season because host sex-related pattern of
infestation by ectoparasites could depend on season
(Krasnov et al. 2005a, 2012; Kiffner et al. 2013)
and (b) the interaction between habitat and season
because seasonal variation in climate can be pro-
nounced differently in lowland and mountain habi-
tats, resulting in differential seasonal effects on
ectoparasites. Then, we selected the best model
based on Akaike Information Criterion (AIC)
using the function dredge from package ‘MuMIn’
(Barton, 2014) implemented in R, and ran the best

model again. This repeatedly fits models with
different number of predictors extracted from the
global model (Barton, 2014). We calculated both
marginal (that is for the model containing fixed
effects only) and conditional (for the model contain-
ing both fixed effects and a random effect) coeffi-
cients of determination (R2) following Nakagawa
and Schielzeth (2013). Finally, to evaluate the
overall fit of the best model, we compared it and
the model with an intercept and a random effect
only using the likelihood ratio test.
Confidence intervals for values of prevalence for

the six host–louse associations in dependence of
habitat, sex and season were calculated as the
adjusted Wald-Sterne’s intervals (Reiczigel, 2003)
using Quantitative Parasitology 3·0 (Rózsa et al.
2000). Differences in rodent densities between
habitat types were analysed using Student’s t-test.

RESULTS

Data on mean abundance and prevalence of five
louse species recorded on 23 species of small
mammals are presented in Table 1. Based on the
cut-off values (seeMethods section), in the following
analyses we focused on six host–louse associations,
namely Apodemus agrarius–Hoplopleura affinis,
Apodemus agrarius–Polyplax serrata, Apodemus
flavicollis–P. serrata, Apodemus uralensis–P. serrata,
Microtus arvalis–Hoplopleura acanthopus and
Myodes glareolus–Hoplopleura edentula.
GLMMs indicated significant effects of at least

one environment-related factor and at least one
host-related factor on the occurrence of lice on a
host individual in five of six host–louse associations
(except for A. uralensis–P. serrata association;
Table 2). Effects of the categorical factors were
manifested in the patterns of prevalence of louse
infestation within host–louse associations between
habitats, sexes and seasons (Table 3). The significant
effect of habitat was found in two associations
(A. agrarius–P. serrata and M. glareolus–H. eden-
tula). The sign of the estimate suggests that the
occurrence of lice was more frequent in individual
rodents occupying lowland than mountain habitats
(Tables 2 and 3). The effect of season on the occur-
rence of lice was significant in five associations with
the estimate being positive (higher occurrence
during warm seasons) in four associations and nega-
tive (higher occurrence during cold seasons) in one
association (M. arvalis and H. acanthopus) (Tables
2 and 3). Sex of an individual affected significantly
the occurrence of lice in three associations (A. agrar-
ius and A. flavicollis with P. serrata and M. arvalis
with H. acanthopus) being higher in males (Tables
2 and 3). Finally, the effect of host body mass on
the occurrence of lice was found in all five associ-
ations, being negative inA. agrarius andA. flavicollis
and positive inM. glareolus and M. arvalis (Table 2,
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see illustrative examples with A. agrarius and M.
arvalis in Fig. 1).

DISCUSSION

Although the explanatory power of models of the
occurrence of lice on an individual host as affected
by the environment- and host-associated factors
was not especially high, results of our study indicate
that these factors affect the probability of an individ-
ual host to be infested. We found this indication in
the majority (five of six) of studied host–louse associ-
ations. It is unclear why no significant effect of any
factor was found for the occurrence of P. serrata
on A. uralensis. Extremely low numbers and preva-
lence of this louse on this host is the most likely
explanation of this lack of significant effects
(Table 1). In addition, A. uralensis is the least pro-
miscuous among Apodemus species, so that each
animal usually contacts with a very limited number
of individuals of the opposite sex (Bryja et al.
2008) which may impede the transmission of lice.
Furthermore, we found consistent trends in the

effect of a factor on the louse occurrence for some
factors (habitat and sex) and contrasting patterns
for other factors (season and body mass). The mech-
anism behind these effects is interplay between louse
and host ecology. This is because the occurrence of
lice on a host is determined by a variety of factors

including the effects of physiology, immunology
and ant-parasitic behaviour of an individual host
on louse reproduction and survival as well as the
effects of the host population density and its social/
spatial behaviour on the processes of louse
transmission.

Habitat-dependence

In both host–louse associations for which the effect
of habitat was significant, higher frequency of infes-
tation occurred in the lowlands. Earlier studies that
reported habitat differences in louse infestation
often explained this pattern by difference in the
host density that, in turn, could affect the trans-
mission of lice among host individuals (e.g.
Fernandes et al. 2012 for lice on Oligoryzomys
nigripes in Brazil). However, this explanation does
not look feasible in our study because in both hosts
for which the significant habitat effect on louse infes-
tation was found, densities (calculated as the number
of animals captured per 100 trap/nights) in lowland
and mountain habitats where similar (Student’s
t-test; t =−0·28 for A. agrarius and t = 0·12 for
M. glareolus; D.F. = 100, P > 0·80 for both), while
they differed in those hosts which did not demon-
strate habitat-dependence of infestation (t=−7·28
for A. flavicollis and t = 2·55 for M. arvalis; D.F. =
100, P < 0·05 for both). It is likely therefore that

Table 1. Mean abundance (A) and prevalence (P, %) of five louse species recorded on 23 small mammalian
species in Eastern Slovakia

Louse

Hoplopleura
acanthopus

Hoplopleura
affinis

Hoplopleura
edentula

Polyplax
reclinata

Polyplax
serrata

Host A P A P A P A P A P

Apodemus agrarius (2816) 0·01 0·9 1·56 29·4 0 0 0 0 1·00 19·2
Apodemus flavicollis (3009) 0·01 0·8 0·04 1·8 0·01 0·7 0 0 1·79 13·0
Apodemus sylvaticus (39) 0 0 0 0 0 0 0 0 0·44 10·3
Apodemus uralensis (1112) 0·02 1·0 0·03 2·2 0 0 0 0 0·17 6·6
Arvicola amphibius (5) 0 0 0 0 0 0 0 0 0 0
Crocidura leucodon (13) 0 0 0·15 7·7 0 0 0·85 0·23 0·08 7·7
Crocidura suaveolens (8) 0 0 0 0 0 0 7·88 75·0 0·75 25·0
Micromys minutus (3) 0 0 0 0 0 0 0 0 0 0
Microtus agrestis (6) 2·67 50·0 0·16 16·7 0 0 0 0 0·17 16·7
Microtus arvalis (712) 5·05 51·2 0·01 1·1 0 0 0 0 0·04 3·2
Microtus subterraneus (81) 0·77 14·8 0·01 1·2 0 0 0 0 0·04 2·5
Mus musculus (7) 0 0 0 0 0 0 0 0 0 0
Muscardinus avellanarius (11) 0 0 0 0 0 0 0 0 0·27 9·1
Myodes glareolus (1312) 0·03 1·2 0·02 1·1 1·10 19·7 0 0 0·03 2·7
Myoxus glis (5) 0 0 0 0 0 0 0 0 0 0
Neomys anomalus (26) 0 0 0·04 3·8 0 0 0 0 0 0
Neomys fodiens (61) 0 0 0 0 0 0 0 0 0 0
Sicista betulina (2) 0 0 0 0 0 0 0 0 1·50 50·0
Sorex alpinus (3) 0 0 0 0 0 0 0 0 0 0
Sorex araneus (213) 0 0 0·01 1·4 0 0 0 0 0·02 1·9
Sorex minutus (36) 0 0 0 0 0 0 0 0 0·03 2·8
Spermophilus citellus (5) 0 0 0 0 0 0 0 0 0 0
Talpa europaea (5) 0 0 0 0 0 0 0 0 0 0

In parenthesis – number of captured and examined individuals.
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habitat dependence of the occurrence of lice was due
to abiotic variables that undoubtedly differ between
the two habitat types.
Lowland habitats in Slovakia are warmer than the

mountains (Mazur and Jakal, 1982). Consequently,
the occurrence of lice could be higher in the lowlands
because higher temperature (although not too high)
favours survival of pre-imaginal lice (e.g. Colwell,
2014) as well as their rate of development (e.g.
Leeson, 1941) and the rate of oviposition by adults
(e.g. Schrader et al. 2008). However, Slovakian low-
lands are also drier than the mountains (Mazur and
Jakal, 1982). The results of studies of the effects of
habitat-associated moisture on lice parasitic on
mammals are contradictory and differ among louse
species, host species and geographic regions. For
example, infestation of small mammals by sucking
lice was found to be higher in drier than wetter habi-
tats in North America (Mize et al. 2011), but the
opposite was true in Africa (Oguge et al. 2009; see
also Moyer et al. 2002 and Calvete et al. 2003 for
chewing lice parasitic on birds in North America
and Southern Europe, respectively). This contradic-
tion could arise due to, for example, among-louse
species variation in the response to humidity.
The reason why the effect of habitat was found in

only two host–louse associations is still unclear and

warrants further investigation. On the one hand,
the fact that this pattern was found in P. serrata
but not in H. affinis, both parasitic on the same
host (A. agrarius) suggests that some between-
louse differences in sensitivity to abiotic factors
play a role. On the other hand, habitat-dependence
of the louse occurrence was found in P. serrata para-
sitic on A. agrarius but not on A. flavicollis. This
suggests also a role of some host-associated mechan-
isms. However, P. serrata exploiting A. agrarius and
those exploiting A. flavicollis might belong to
different lineages (see Štefka and Hypša, 2008) and
thus the former explanation seems more likely.

Seasonal changes

Three of four hosts (four of five host–louse associ-
ations) demonstrated higher occurrences of louse
infestation during the warm season. Seasonal differ-
ences in abundance and prevalence of sucking lice on
small mammals have been reported for a variety of
geographic regions (Sosnina et al. 1981; Wilson
et al. 1991; Archer et al. 2014). Similarly to our
results, the highest abundance and prevalence of
lice in the temperate areas have been found in the
warmer months (Sosnina et al. 1981; Haitlinger,
1983; Krištofík and Lysy, 1992). This was explained

Table 2. Summary of GLMM (binomial error and logit-link function) of the effects of habitat, host sex,
season and host body mass on the occurrence of lice on an individual host for six host–louse associations

Association Fixed effect
Coefficient estimate
±S.E. z value AICw margR2 condR2 χ2

Apodemus agrarius–H. affinis Season (warm) 0·57 ± 0·09 6·04*** 0·45 0·02 0·05 39·57***
Body mass −0·97 ± 0·35 −2·74**

Apodemus agrarius–Polyplax
serrata

Habitat
(mountain)

−0·39 ± 0·18 −2·17* 0·22 0·02 0·12 17·98**

Season (warm) 0·22 ± 0·11 2·00*
Sex (male) 0·27 ± 0·10 2·78**
Body mass −0·73 ± 0·21 −2·10*

Apodemus flavicollis–
Polyplax serrata

Season (warm) 0·59 ± 0·16 3·67*** 0·32 0·03 0·19 29·35***

Sex (male) 0·41 ± 0·11 3·48***
Body mass −0·70 ± 0·29 −2·05*

Apodemus uralensis–Polyplax
serrata

Habitat
(mountain)

−0·55 ± 0·36 −1·52ns – – 0·11 –

Sex (male) 0·39 ± 0·26 1·53ns

Body mass 2·78 ± 1·89 1·68ns

Microtus arvalis–
Hoplopleura acanthopus

Season (warm) −0·71 ± 0·22 −3·25** 0·10 0·12 0·36 54·90***

Sex (male) 0·38 ± 0·16 2·32*
Body mass 3·62 ± 0·55 6·48***

Myodes glareolus–
Hoplopleura edentula

Habitat
(mountain)

−0·62 ± 0·20 −3·13** 0·04 0·49 0·51 31·64***

Season (warm) 0·50 ± 0·17 2·82**
Body mass 2·13 ± 0·78 2·72**

Year of sampling was introduced as a random effect in each model. Reference levels for the fixed effects were lowland (for
habitat), female (for sex) and cold (for season). AICw – Akaike Information Criterion weight of the best model from a set
of models derived from a full model (all fixed effects, the interactions between sex and season and between habitat and
season, and a year of sampling as a random effect; see main text for explanations). margR2 –marginal coefficient of determi-
nation, condR2 – conditional coefficient of determination. Significance levels: * – <0·05, ** – <0·01, *** – <0·001ns – non-
significant. χ2 – likelihood ratio χ2 when comparing the best model with the model of intercept and a random effect only.
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not only by the favourable air temperature but also
by an increase in density and mobility of hosts
(Sosnina et al. 1981). The latter presumably facili-
tates transmission of lice among host individuals,
thus not only increasing louse prevalence but also
mating chances of lice. This, in turn, may lead to
higher reproductive rates and, eventually, to higher
abundances. The only host species in our study in
which more individuals were infested by lice
during cold than warm seasons was the common
vole, M. arvalis. In contrast to other studied
rodents, this species is colonial. In winter, non-
hibernating small mammals of the temperate zone,
such as M. arvalis, spend much time in the subni-
vean space (i.e. between the snow cover and the
ground) (e.g. Bashenina, 1962; Fuller, 1967; Pruitt,
1984; Korslund and Steen, 2006) and their activity
level decreases at this time (e.g. Eccard and Herde,
2013). Thus, in M. arvalis, time spent in contact
with other members of the colony might substan-
tially increase in the cold season, which results in a
greater rate of the louse transmission between indi-
viduals and, eventually, in a higher occurrence of
infestation. In addition, the summer nests of M.
arvalis are usually occupied by a single female with
its offspring, whereas the winter nests are occupied
by many unrelated individuals (Chełkowska, 1978).
This is another, but not necessarily an alternative
mechanism of the higher number of individual
voles infested by lice during cold as compared to
warm seasons.

Male bias

Male-biased parasitism has long been a popular
concept based on numerous observations that mam-
malian and avian males are usually infested with
more parasite individuals and/or species than
females (see reviews in Zuk and McKean, 1996;
Krasnov et al. 2012). However, recent studies chal-
lenged this concept and demonstrated that it is far
from being universal rule (Kiffner et al. 2013,
2014). Nevertheless, whenever a significant effect
of host sex on the occurrence of lice was found in
our study (three of six host–louse associations), it
indicated that the probability being infested was
higher for a male than a female rodent. Male-
biased infestation by sucking lice has been found in
a variety of louse and host species in different geo-
graphic regions including Polyplax arvicanthis on
Rhabdomys pumilio in South Africa (Matthee et al.
2010) and several Hoplopleura lice on O. nigripes in
South America (Fernandes et al. 2012). However,
the lack of any gender bias in louse infestation has
been reported as well (Scantlebury et al. 2010;
Viljoen et al. 2011). Explanations of male-biased
infestation usually involve either lower immuno-
competence in males due to the immunosuppressive
effect of testosterone or their higher mobilityT
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resulting in higher exposure to parasites or both.
Both these mechanisms could be implied for the
explanation of the patterns found in our study. In
other words, gender-specific behaviour and physi-
ology of the host are the most likely reasons behind
gender-biased infestation. For example, male
M. arvalis are more often involved in aggressive
interactions than females and the testosterone
levels in these males are elevated (Gromov and
Voznesenskaya, 2010). In contrast, maleM. glareolus
usually avoid one another (Łopucki, 2007). These
differences explain why the male bias in louse infes-
tation was found in the former but not in the latter
species. Although lice spend their entire life on the
hosts, they are transmitted between hosts via their
contacts. Males of M. arvalis continuously migrate
from colony to colony while this is not the case
for females (Gauffre et al. 2009). This dispersal
pattern might be another mechanism underlying
male-biased parasitism in this rodent. However, we
also found male-biased infestation of the same host
species (A. agrarius) by one (P. serrata) but not
another (H. affinis) louse species. This suggests
that the manifestation of gender-biased parasitism
may depend not only on the life history and/or phys-
iological traits of a host species, but also on some,
still unknown, traits of a parasite species.

Effect of host body mass: age or body condition?

Body mass of an individual rodent could be indica-
tive of either its age or body condition. It is com-
monly known that parasite abundance and the
pattern of its distribution often vary between
younger and older hosts (e.g. Goater and Ward,

1992). Moreover, studies from the number of host–
parasite systems demonstrated that shape of the
relationships between host age and parasite abun-
dance and/or distribution varies among host–para-
site associations because these relationships are
generated by different mechanisms (see review in
Hudson and Dobson, 1995). Indeed, substantial
variation in the relationships between abundance
and distribution of parasites and host age/body size
has been shown for small mammals and fleas
(Krasnov et al. 2006a). Similar results were found
for lice in this study. The most likely reason for
the variation in host age–louse occurrence patterns
is differences in the natural history of host species.
We found a decrease in louse occurrence with
increasing body mass in both wood mice
(Apodemus) and the opposite trend in both voles
(Myodes and Microtus). The explanation for this
difference is that the relationship between host age
and louse infestation is affected by the pattern of
the host’s postnatal growth. Indeed, wood mice
attain a definitive size at about 40 days and grow
extremely slow afterwards (e.g. Apodemus semotus;
Lin et al. 1993). In contrast, period of continuous
growth in voles is at least twice (Microtus cabrerae;
Fernández-Salvador et al. 2001) or thrice (Microtus
montebelli; Nakatsu, 1975) longer. Consequently,
the heaviest cohort of wood mice is a mix of individ-
uals of median age and old individuals, whereas the
heaviest cohort of voles is represented mainly by
old individuals. The immune function in the
individuals of median age is strong, whereas it
deteriorates in old individuals (see review in
Miller, 1996). Lower defensibility of old animals
makes them better patches for lice. Consequently,

Fig. 1. The effect of body mass of an individual (a) A. agrarius and (b) M. arvalis on the occurrence of lice.
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the difference in age composition of the heaviest
individuals between wood mice and voles could be
manifested in the contrasting patterns of body
mass–louse infestation relationship.
The effect of the host’s body condition on para-

sites has been studied in a variety of animals (e.g.
Oppliger et al. 1996; Brown et al. 2000; Krasnov
et al. 2005b). On the one hand, a host in good con-
dition may provide parasites with resources of a
higher quality than a host in poor condition
(Dawson and Bortolotti, 1997). On the other hand,
parasites may benefit from exploiting hosts of the
poorer body condition because their immune
system is weaker (Simon et al. 2003). It is not sur-
prising, therefore, that studies of the effect of the
host’s body condition on parasites produced contra-
dictory results with parasite performance in hosts in
the good conditions being either better (e.g. Blanco
et al. 1997) or worse (e.g. Whiteman and Parker,
2004) than in hosts in the poor conditions.
Moreover, the opposite patterns of parasite perform-
ance in hosts of different nutritional statuses were
reported for parasites belonging to the same taxon
(fleas; Krasnov et al. 2005b vs Tschirren et al.
2007). In our study, we found negative relationships
between host body mass and the occurrence of lice in
three associations and positive relationships in two
associations. These opposite patterns could stem
from differences in the co-evolutionary history of
different host–parasite systems (Tschirren et al.
2007). This explanation is indirectly supported by
the fact that we found similar patterns in closely-
related (among mice or among voles) but different
patterns in distantly related hosts (between mice
and voles). We also found the same pattern in the
same louse (P. serrata) parasitic on eitherA. agrarius
or A. flavicollis. Moreover, the opposite patterns of
the relationships between infestation and the host’s
body condition among host–parasite associations
may arise due to either differential immunological
responses of the same host to attacks by different
parasites or differential responses of the same para-
site to the defence efforts of different host or both
(e.g. Khokhlova et al. 2004).
We conclude that, despite being permanent ecto-

parasites, the distribution of sucking lice among
host individuals was influenced not only by the
host-related but also by the environment-related
factors. However, the effects of the environment-
related factors could be mediated via life history par-
ameters of a host such as reproductive and dispersal
patterns, social behaviour and spatial distribution.
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