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PROPERTIES OF CROWDING INDICES AND STATISTICAL TOOLS TO
ANALYZE PARASITE CROWDING DATA

Jenö Reiczigel, Zsolt Lang*, Lajos Rózsa†, and Béla Tóthmérész‡
Department of Biomathematics and Informatics, Faculty of Veterinary Science, Szent István University, P.O. Box 2, Budapest H-1400, Hungary.
e-mail: Reiczigel.Jeno@aotk.szie.hu

ABSTRACT: Crowding, i.e., the size of the infrapopulation inhabiting an individual host, is a major component of parasites’
environment, which often influences both morphological and life-history characters (the so-called density-dependent characters)
in different parasite taxa. Although crowding equals intensity in case of a single parasite individual, mean intensity of the host
population does not define mean crowding of the parasite population. Crowding indices are notoriously hard to handle statistically
because of the inherently large number of nonindependent values in data. In this study, we aim to investigate the apparently
paradox features of crowding indices and to make some proposals and also to introduce statistical methods to calculate confidence
intervals and 1-sample and 2-sample tests for mean crowding. All methods described in this study are supported by the freely
distributed statistical software Quantitative Parasitology.

Traditionally, parasitologists used to claim that the host’s
body is the single most important component of parasite’s en-
vironment. However, since Read’s (1951) study on the ‘‘crowd-
ing effect,’’ there is a slowly increasing interest in changing
this view and in investigating potential effects of infrapopula-
tion size on the ecology, evolution, and behavior of parasites.
Infrapopulation size often correlates negatively with helminth
body size both in the intermediate (Keymer, 1981) and in the
definitive hosts (see Roberts, 1961; Shostak and Dick, 1987).
Density-dependent intraspecific variability of helminth body
size may be dramatic because the largest individuals may be
90 times the size of the smallest (Szalay and Dick, 1989). Sim-
ilar effects on helminth body size and fecundity also occur in
multispecies helminth assemblages (Dezfuli et al., 2002). Body
size differences often mirror differences in life-history traits and
particularly in fecundity; thus, helminth fecundity is often den-
sity dependent also (Zervos, 1988a, 1988b). Infrapopulation
size may also correlate with measures of sexual selection in
parasites, such as sex ratio in protists (Read et al., 1992, 1995),
nematodes (Poulin, 1997), spiny-headed worms (Poulin and
Morand, 2000; Sasal et al., 2000), and even arthropods (Rózsa
et al., 1996; Rózsa, 1997).
Therefore, future students of parasite ecology, evolution, and

behavior are likely to face the challenge of quantifying mea-
sures of parasite crowding and comparing these measures sta-
tistically across different samples. Crowding is defined as in-
tensity, or infrapopulation size, from the parasite’s point of
view. This means that crowding equals intensity when speaking
about an individual parasite or an infrapopulation living on a
single host. In contrast, mean intensity in a host population does
not predict mean crowding in the corresponding parasite pop-
ulation. Mathematically, mean host intensity is the sum of in-
tensity values over the hosts divided by the number of hosts,
whereas mean crowding is the sum of the crowding values over
the parasites divided by the number of parasites. Let us have 2
samples consisting of 3 hosts each to illustrate this point:
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intensities
mean (median)
intensity

mean (median)
crowding

Sample A: 4, 5, 6
4 ! 5 ! 6

" 5 (5)
3

4 # 4 ! 5 # 5 ! 6 # 6
" 5.13 (5)

4 ! 5 ! 6

Sample B: 1, 4, 7
1 ! 4 ! 7

" 4 (4)
3

1 # 1 ! 4 # 4 ! 7 # 7
" 5.5 (7)

1 ! 4 ! 7

In this hypothetical example, hosts tend to harbor larger in-
frapopulations in sample A, whereas parasites tend to live in
larger infrapopulations in sample B. This apparent contradiction
is a consequence of a difference in the aggregation of samples.
Interestingly, average individual parasites come from hosts with
intensities higher than the average intensity, and this shift is
more pronounced in more aggregated samples.
Empirical data (Fig. 1) suggest that mean intensity may

roughly predict mean crowding. However, this pattern is valid
only within a narrow taxonomic unit, and contradictory situa-
tions, i.e., one species having larger mean intensity and the
other having larger mean crowding, may still occur. Thus, when
studying the influence of crowding on the ecology of parasites,
statistical analysis should be performed directly on measures of
crowding.
Similar approaches have been proposed in spatial and behav-

ioral ecology (Lloyd, 1967; Jarman, 1974). Spatial ecologists
use artificial sampling units (so-called quadrats) to determine
abundance or density of species; thus, their sampling methods
focus on units potentially harboring several individuals belong-
ing to different species. The situation is similar in parasitology,
with the major difference being that host individuals act as nat-
ural sampling units in this case. For use in spatial ecology,
Lloyd (1967) introduced 2 types of crowding indices, namely
‘mean crowding’ and ‘mean demand,’ to derive an index of
aggregation, called ‘index of patchiness.’ Lloyd’s mean crowd-
ing is the mean number per individual of other individuals in
the same quadrat:

N

(X $ 1)! j
j"1m* "

N

where N is the number of all individuals and Xj (j " 1, 2, . . . ,
N) is the number of conspecific individuals living in the same
quadrat as the jth individual. Apparently, this idea relies on the
assumption that an individual does not ‘crowd’ itself, suggest-
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FIGURE 1. Mean intensity correlates positively with mean crowding
in case of empirical data of avian lice (data were obtained from Rózsa
et al., 2000, and references therein).

ing that ‘crowding effects’ are realized through interactions
among individuals, such as aggression. On the other hand, mean
demand is based on the presumption that individuals do crowd
themselves even when they are alone, provided that crowding
effects are realized through depletion of limited resources.
Thus, mean demand equals the mean number of individuals per
quadrat per individual. By definition, Lloyd’s index of mean
crowding equals 0, whereas mean demand equals 1 for a lonely
individual, and mean demand equals mean crowding ! 1 in
general. Note that mean demand is identical with the index of
‘typical group size’ as defined by Jarman (1974) to quantify
the group size within which an average individual lives.
Any of these indices could be used to analyze density-de-

pendent effects in parasites. However, one might choose to be
interested in analyzing crowding effects considering other
scales, e.g., the logarithmic scale, expressing the biological no-
tion that proportional changes are more biologically meaningful
than additive ones. In quantification and crowding indices we
define parasite crowding in general as a monotone increasing
function of the infrapopulation size (intensity), which incorpo-
rates the above crowding indices as special cases.
Given a wide range of modern statistical methods for quan-

tifying parasites in samples of hosts (Rózsa et al., 2000), it is
surprising to note that none of the standard methods can be
used to handle measures of crowding. All available statistical
tools used to compare parasite burdens across samples are based
on the presumption that data consist of statistically independent
events, whereas crowding data almost never meet this assump-
tion. To illustrate our point, consider the following hypothetical
sample consisting of 3 hosts:

host intensity values: 1, 2, 3 (mean intensity " 2)
parasite crowding values: 1, 2, 2, 3, 3, 3

(mean crowding " 2.33)

Let us eliminate the last parasite individual to perceive how the
data change:

host intensity values: 1, 2, 2 (mean intensity " 1.66)
parasite crowding values: 1, 2, 2, 2, 2

(mean crowding " 1.8)

Alternatively, let us eliminate the last host individual to per-
ceive how the data change:

host intensity values: 1, 2 (mean intensity " 1.5)
parasite crowding values: 1, 2, 2 (mean crowding " 1.66)

When a single parasite or host is added or eliminated, there is
only a single change in the intensity data, but there are several
parallel changes in crowding data. This means that crowding
data consist of nonindependent values, which exhibit multiple
changes synchronously because of a single event. Statistical
methods currently used in parasitology are incapable of han-
dling this effect. Of course, this problem does not emerge in
samples where individual intensities do not exceed 1, such as
in many host–parasitoid systems. However, intensity may ex-
ceed 1 in the vast majority of host–parasite systems; thus, the
nonindependence of crowding data is a real problem in parasite
ecology. The aim of this study is to investigate some curious
features of crowding data and to introduce statistical methods
that are capable of handling their nonindependence. Mathemat-
ical definition is given in section 2, some interesting properties
are described in section 3, statistical inference is outlined in
section 4 followed by discussion and concluding remarks in
section 5.

QUANTIFICATION AND CROWDING INDICES

For an individual parasite, crowding can be defined simply
by intensity, i.e., the size of the infrapopulation it lives in. In
some circumstances, rescaling this by a monotone function may
offer a more meaningful interpretation; this also depends on the
type of mathematical model in which crowding is to be ana-
lyzed. An example of this is the logarithmic transformation, i.e.,
taking crowding " ln(intensity), which expresses the view that
relative differences are more appropriate to consider than ab-
solute ones; thus, the difference between 1 and 2 is the same
as between 10 and 20. Another example of such a transfor-
mation is Lloyd’s definition of mean crowding, where crowding
" intensity $ 1, resulting in 0 crowding for individuals living
alone.
To quantify the level of crowding in a parasite population or

sample, one can use a statistic (a so-called ‘‘measure of loca-
tion’’) calculated from the individual values. The most widely
used measures of location are the mode, the median, and the
mean. (The fourth potential measure of location, the geometric
mean, is equivalent to using the logarithmic scale and applying
the mean.) However, in case of highly skewed intensity distri-
butions, which are typical of many parasites, there is a good
chance that the mode or median of crowding is equal to the
largest value. As an example, assume a sample of 12 hosts with
intensities 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 20 (mean intensity "
3.25), which corresponds to a sample of 39 parasites, with mean
" 11.36, and mode " median " 20. The bar charts in Figure
2 illustrate the difference between intensity and crowding.
The main problem is that in this case both the mode and the

median rely on data from a single host, which may dramatically
influence their sampling properties such as SE. In addition,
these measures are uncomfortable to handle statistically when hav-
ing many tied values, so we propose to use the mean. Mean
crowding in a population or sample of P parasites is defined as

P

c! j
j"1mean C " ,
P
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FIGURE 2. Frequency distribution of intensity and crowding for the
same hypothetical sample. Intensity is 20 for a single host, but this
results in crowding " 20 for 20 parasites.

where cj denotes crowding value of the jth parasite. To make a
clear distinction between sample and population mean, we will
follow the convention of denoting the population mean by E(C)
and the sample mean by c̄. This is in accordance with the usual
statistical notation and helps avoid confusion when the sample
mean c̄ is to be used as an estimate of the unknown population
mean E(C).
It is worth noting how mean crowding is related to indices of

intensity. Assume that the host population consists of H hosts,
and let ih denote the intensity for the hth host (h " 1, 2, . . . ,
H). Then the parasite population consists of P " individ-H% ih"1 h

uals, and the population mean crowding can be written as
H

2i! h
h"1E(C) " ,H

i! h
h"1

given crowding is quantified directly by the size of the parasite
infrapopulation (Lloyd, 1967; Jarman, 1974). If using a general
monotone increasing function of intensity f(i) to measure
crowding, the formula changes to

H

i f (i )! h h
h"1E(C ) " .f H

i! h
h"1

Especially for the logarithmic scale, it results in
H

i ln(i )! h h
h"1E(C ) " .log H

i! h
h"1

Mean crowding can be defined in a similar manner for the-
oretical probability distributions, sometimes called ‘‘infinite
populations.’’ Especially, for a parametric distribution, mean
crowding can be expressed as a function of the parameters. In
case of a negative binomial, which is the most widely used
distributional model ever since Crofton (1971), this results in

E(C) " m ! m/k ! 1 (1)

where m and k denote the mean value and the negative binomial
exponent, respectively (Lloyd, 1967).

PROPERTIES OF MEAN CROWDING

Mean crowding in a population is always greater than or
equal to mean intensity. Equality holds only if all hosts have
the same number of parasites, which is nonrealistic for real

parasites. The greater the variance of intensity, the greater the
difference between mean crowding and mean intensity. Actu-
ally, the following relation holds

var(I)
E(C) " E(I) ! (2)

E(I)

where E(I) and var(I) denote the population mean and variance
of intensity, respectively (Lloyd, 1967). This result implies that
the mean and variance of intensity fully predict mean crowding.
Unfortunately, log-scaled mean crowding cannot be calculated
directly from the mean and variance of intensity.
If mean crowding is known in each one of r populations,

then crowding in the pooled population is equal to the weighted
average of the individual mean crowdings with weights being
the numbers of parasites in the corresponding populations. That
is, given the crowding indices and the number of parasites Cm

and Pm (m " 1,2, . . . , r).
r

P C! m m
m"1E(C) "pooled r

P! m
m"1

From this, it follows that the pooled mean crowding is between
the minimal and maximal one, and especially, if all crowdings
are equal, then the pooled one is also equal to this common
value.
There are some surprising properties of mean crowding, which

may seem to be paradoxical at first sight, e.g., increasing the
number of parasites in particular hosts may decrease the popu-
lation mean of crowding, or vice versa. To illustrate this, assume
that the host population consists of 3 hosts as follows:

intensity: 1, 2, 10:

E(I) " 4.33,

1 # 1 ! 2 # 2 ! 10 # 10
E(C) " " 8.077.

1 ! 2 ! 10

Adding a parasite to the second infrapopulation, we get

intensity: 1, 3, 10:

E(I) " 4.66,

1 # 1 ! 3 # 3 ! 10 # 10
E(C) " " 7.857,

1 ! 3 ! 10

i.e., the mean crowding decreases. The resolution of this para-
dox is that we have introduced the new individual into an in-
frapopulation in which crowding was well below the population
mean. Although we have increased crowding here, it still re-
mained below the mean, so we actually increased the number
of individuals with a crowding value below the population
mean. Formula (2) above offers another argument, namely, that
the modified host population has higher mean intensity but less
variance of intensity. Thus, the first term of the formula has
increased, whereas the second term has decreased, resulting in
an overall decrease of mean crowding.
Another apparently paradox property highlights the differ-

ence between crowding and intensity. Adding or removing a
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FIGURE 3. Dependence of the relative bias (bias divided by the true
value) of mean crowding on sample size, estimated for each of the 12
empirical distributions (listed in Table I) and for each sample size from
10,000 simulated samples. Asymptotically, relative bias is proportional
to 1/n where n is the sample size.

FIGURE 4. Dependence of SE of mean crowding on sample size. SE
is estimated for each of the 12 empirical distributions and for each
sample size from 10,000 simulated samples.

host and its parasites may increase mean crowding and decrease
mean intensity (or vice versa) at the same time. An example:

intensity: 1, 10:

E(I) " 5.5,

1 # 1 ! 10 # 10
E(C) " " 9.182,

1 ! 10

intensity: 1, 7, 10:

E(I) " 6,

1 # 1 ! 7 # 7 ! 10 # 10
E(C) " " 8.333,

1 ! 7 ! 10

The explanation is simple. Looking at the first population, we
can see that its mean crowding (9.182) is higher than its mean
intensity (5.5). Introducing a host with intensity 7, which is
between mean intensity and mean crowding, mean intensity will
increase whereas mean crowding will decrease.

STATISTICAL INFERENCE

In the following, estimation and testing of mean crowding
are addressed. A point estimate and a confidence interval is
introduced for the 1-sample problem. Concerning statistical
testing, both 1- and 2-sample tests are derived from the 1-sam-
ple confidence interval.
The main difficulty is that the usual sampling method is sam-

pling the hosts because one cannot draw a random sample from
the parasite population without catching the hosts they live in;
furthermore, when a host is sampled, all of its parasites must
be sampled to determine the infrapopulation size. Thus, sam-
pling the hosts necessarily results in a cluster sample of para-
sites, making statistical inference a little more difficult than it
would be if a random sample could be drawn directly from the
parasite population.

Point estimate: The simplest method to estimate mean crowd-
ing is to apply the same formula (2) for the sample that was

used for the population (this kind of estimate is called a plug-
in estimate), which results in

n
2i! j

j"1c̄ " ,n

i! j
j"1

where n is the number of hosts in the sample, and ij denotes
the intensity for the kth host (j " 1, 2, . . . , n). The sample
mean crowding c̄ has a downward bias, i.e., it tendentiously
underestimates the population mean crowding E(C). (For the
mathematical proof see the Appendix. Note that for the negative
binomial distribution, it was proven by Lloyd, 1967). The bias
is a consequence of sampling the hosts. The sample mean based
on a random sample from the parasite population would be
unbiased. Fortunately, as being a so-called ratio estimate, c̄ is
asymptotically unbiased, i.e., its bias tends to 0 (of the order of
1/n) if the sample size tends to infinity (Cochran, 1963, p. 161).
However, it is not clear whether the bias is relevant for a par-
ticular sample size. It is not easy to make a general statement
about this because it depends on the distribution of intensity.
Therefore, we investigate this by simulation based on various
realistic intensity distributions (Fig. 3).
The estimate c̄ has further nice asymptotic properties. It is

asymptotically normally distributed and its SE tends to 0, with
a magnitude of 1/ , if the sample size tends to infinity (Fig."n
4), see Cochran (1963, pp. 157–158).
Assuming a parametric distribution for intensity, it is possible

to construct a maximum likelihood (ML) estimate for mean
crowding, which is expected to be better than c̄. The usual
parametric model for parasite intensity distributions is the neg-
ative binomial, although in some cases this model does not fit
either (Rékási et al., 1997). The ML estimate for mean crowd-
ing is obtained according to (formula 1) from the ML estimates
of mean intensity and the negative binomial exponent. The lat-
ter can be calculated following Bliss and Fisher (1953). For the
negative binomial distribution, all these results as well as the
calculation of confidence intervals based on them is described
by Lloyd (1967). Note that (formula 2) can also be applied to
estimate mean crowding from the sample mean and variance of
intensity, enabling estimation of mean crowding from published
data, as mean and SD of intensity are given in most studies.
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TABLE I. Coverage probabilities of the BCa confidence interval for different distributions and sample sizes, estimated from 10,000 simulated
samples. Coverage values too low compared with the nominal level (!0.88, !0.94, !0.97 for nominal .90, .95, .975, respectively) are typed in
boldface.

Parasite species

True mean

Intensity Crowding

n " 100

90% 95% 97.5%

n " 200

90% 95% 97.5%

n " 300

90% 95% 97.5%

Anatoecus dentatus 17.0 51.6 0.904 0.951 0.976 0.900 0.948 0.975 0.898 0.949 0.975
A. icterodes 62.2 491 0.883 0.928 0.952 0.899 0.948 0.972 0.907 0.957 0.979
Brueelia tasniamae 44.2 108 0.907 0.956 0.979 0.908 0.953 0.978 0.897 0.947 0.975
Carnus hemapterus 29.1 53.1 0.899 0.945 0.966 0.909 0.954 0.974 0.906 0.954 0.976
Coloceras sofioticus 5.23 19.4 0.890 0.930 0.950 0.898 0.950 0.971 0.911 0.956 0.978
Columbicola bacillus 7.64 16.6 0.855 0.900 0.922 0.892 0.935 0.959 0.902 0.949 0.971
Cummingsiella aurea 24.7 138 0.842 0.883 0.899 0.892 0.938 0.958 0.901 0.948 0.968
Myrsidea cornicis 12.5 45.4 0.877 0.921 0.942 0.902 0.950 0.973 0.899 0.950 0.973
M. isostoma 23.7 97.5 0.864 0.908 0.929 0.897 0.944 0.967 0.902 0.952 0.972
Philopterus atratus 24.0 85.0 0.904 0.950 0.972 0.900 0.951 0.975 0.906 0.957 0.980
P. ocellatus 11.5 25.7 0.868 0.916 0.944 0.897 0.944 0.966 0.904 0.948 0.971
Rhynonirmus helvolus 62.8 505 0.865 0.905 0.925 0.900 0.945 0.967 0.896 0.951 0.974
Neg. bin. m " 2, k " 0.2 5.16 11.8 0.876 0.918 0.944 0.897 0.946 0.969 0.910 0.954 0.976
Neg. bin. m " 2, k " 0.1 7.45 20.4 0.868 0.909 0.935 0.902 0.948 0.968 0.905 0.951 0.976
Neg. bin. m " 2, k " 0.05 11.5 37.0 0.857 0.903 0.929 0.899 0.946 0.967 0.908 0.952 0.977
Neg. bin. m " 20, k " 0.2 32.4 106 0.863 0.907 0.931 0.898 0.945 0.967 0.912 0.954 0.977
Neg. bin. m " 20, k " 0.1 47.0 186 0.853 0.896 0.921 0.897 0.943 0.965 0.909 0.952 0.978
Neg. bin. m " 20, k " 0.05 74.1 343 0.847 0.896 0.921 0.906 0.944 0.964 0.905 0.950 0.974

Neg. bin. " Negative binomial distributions.

Confidence interval construction: Because of the heteroge-
neity and typical nonnormality of parasite distributions, confi-
dence interval construction requires application of nonparamet-
ric methods or bootstrap techniques. As was mentioned above,
sample mean crowding is a biased estimate of the population
mean. Furthermore, sample mean and sample variance of
crowding are correlated. In such circumstances, the bias-cor-
rected and accelerated (BCa) bootstrap confidence interval ap-
pears to be the most appropriate choice for confidence interval
construction (Efron and Tibshirani, 1993). Although there are
some asymptotic results concerning this method (Davison and
Hinkley, 1997), investigating its performance under realistic
circumstances is crucial. Because of the heterogeneity of the
distributions, it is difficult to use theoretical methods for this
purpose; therefore, we preferred to carry out a simulation study
based on typical parasite distributions and realistic sample sizes.
For this purpose, we chose 18 distributions, including 12 em-

pirical distributions of avian ectoparasites (for the sources of
data, see Rózsa et al. [2000] and references therein) and 6 dif-
ferent negative binomials. Distributions derived from empirical
data were represented by 300 intensity values corresponding to
the equidistant quantiles (1/300 quantiles) of the smoothed em-
pirical distribution. Negative binomial distributions were trun-
cated at their upper 0.99 quantiles because occurrence of un-
realistically high intensity values attributed to unboundedness
of the negative binomial distribution would influence heavily
the estimate of crowding. We used these distributions as ‘‘pop-
ulations,’’ calculated their crowding values, then drew samples
from each of them and constructed BCa confidence intervals
from the samples. Because the population crowding was
known, it was possible to determine the actual coverage prob-
abilities of the confidence intervals and to compare the actual
coverage to the nominal one. We did this with nominal 90, 95,
and 97.5% intervals (97.5% will be needed for a 95% 2-sample

test, see below). To provide sufficient precision, coverage was
estimated from 10,000 simulated samples for each distribution,
resulting in SE of the coverage estimate !0.3, 0.22, 0.16% at
level of 90, 95, 97.5%, respectively.
We found that for sample sizes below 100, the actual cov-

erage reaches the nominal one only for the least aggregated
distributions. For typically distributed ectoparasites sample siz-
es of 100–200 are needed, whereas for highly aggregated ones
300 or more. Evidently, if 2–3% of the hosts harbor about 50%
of parasites, a small sample is unlikely to contain any of these
host individuals; thus, any estimate will be extremely biased.
On the other hand, the BCa confidence interval seems to be
correct for large samples (Table I). A similar simulation study
was carried using the same distributions, but calculating log-
transformed crowding values. In this case, smaller sample sizes
were found to be sufficient (100 for less aggregated and about
200 for more aggregated distributions).

Statistical testing: An 1-sample test for mean crowding can
be derived from the above confidence interval in the usual man-
ner. The null hypothesis stating that mean crowding in the study
population equals to a certain hypothetical value C0, i.e., H0:
E(C) " C0 against the alternative of inequality, is to be rejected
at level & if the (1 $ &)-level confidence interval for E(C) does
not contain the hypothetical value C0.
Similarly, an & level-2-sample test can be based on 2 (1 $

&/2)-level confidence intervals. The null hypothesis that crowd-
ing is equal in 2 populations, i.e., H0: E(C1) " E(C2) against
the alternative of inequality, is to be rejected at level & if the
(1 $ &/2)-level confidence intervals for E(C1) and E(C2) do not
overlap. Especially, 2 samples with nonoverlapping 97.5% con-
fidence intervals for mean crowding provide evidence for the
difference between population mean crowdings at P " 0.05.
One-tailed tests, i.e., those with directional alternative hy-
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TABLE II. Coverage probabilities of the jackknife confidence interval by Reed (1983), estimated from 10,000 simulated samples. Coverage values
too low compared with the nominal level (!0.88, !0.94, !0.97 for nominal .90, .95, .975, respectively) are typed in boldface.

Parasite species

n " 200

90% 95% 97.5%

n " 300

90% 95% 97.5%

Anatoecus dentatus 0.907 0.957 0.978 0.907 0.956 0.978
A. icterodes 0.898 0.946 0.972 0.894 0.944 0.973
Brueelia tasniamae 0.900 0.950 0.972 0.900 0.949 0.973
Carnus hemapterus 0.892 0.942 0.967 0.902 0.948 0.972
Coloceras sofioticus 0.895 0.941 0.966 0.903 0.948 0.970
Columbicola bacillus 0.869 0.914 0.936 0.882 0.926 0.950
Cummingsiella aurea 0.874 0.917 0.942 0.892 0.936 0.958
Myrsidea cornicis 0.884 0.933 0.958 0.891 0.939 0.963
M. isostoma 0.885 0.932 0.955 0.898 0.941 0.967
Philopterus atratus 0.895 0.944 0.969 0.910 0.954 0.978
P. ocellatus 0.893 0.937 0.962 0.899 0.944 0.968
Rhynonirmus helvolus 0.890 0.934 0.959 0.889 0.941 0.966
Neg. bin. m " 2, k " 0.2 0.892 0.936 0.959 0.898 0.940 0.966
Neg. bin. m " 2, k " 0.1 0.885 0.933 0.957 0.890 0.938 0.960
Neg. bin. m " 2, k " 0.05 0.879 0.928 0.953 0.899 0.940 0.964
Neg. bin. m " 20, k " 0.2 0.884 0.933 0.955 0.890 0.936 0.961
Neg. bin. m " 20, k " 0.1 0.890 0.931 0.954 0.896 0.940 0.964
Neg. bin. m " 20, k " 0.05 0.888 0.932 0.953 0.888 0.936 0.961

Neg. bin. " Negative binomial distributions.

potheses, such as, for example, ‘‘crowding in population 1 is
greater than in population 2,’’ can be constructed in the same
manner but using 1-sided confidence intervals. A (1 $ &)-level
1-sided confidence interval can be obtained from a (1 $ 2&)-
level 2-sided one by expanding it to infinity (or minus infinity)
on 1 side, e.g., a 90% 2-sided interval (c1, c2) leads to the
following 95% 1-sided intervals: (c1, ') or ($', c2).
The properties of the above tests follow from the properties

of the corresponding confidence intervals. User-friendly statis-
tical tools to estimate and to compare mean crowding are in-
corporated in the latest version Quantitative Parasitology, a
software freely distributed through the authors’ web page (Rei-
czigel and Rózsa, 2003).

DISCUSSION

In recent decades, there was a sudden increase in the statis-
tical tools used in spatial ecology. Although some of these
methods could be used fruitfully in many other branches of
sciences, the adoption of them is still ahead in many areas.
Parasite ecologists in general have been failing to adopt Lloyd’s
indices, but behavioral ecologists have apparently also missed
the point. Thus, Jarman repeatedly emphasized that group size
is a major factor in an individuals’ social environment and in-
troduced an index to quantify typical group size (Jarman, 1974,
1982; P. J. Jarman and M. V. Jarman, 1979). By this term, he
meant a group size typical to an ‘average individual,’ without
realizing that this index was identical to Lloyd’s index of mean
demand. Despite the formal parallelism between these problems
(sampling units: quadrat " group " infrapopulation inhabiting
a host individual), it appears that nobody except Jarman (1974,
1982) proposed the use of crowding indices for the analysis of
social behavior or parasite crowding effects yet.
Lloyd (1967) outlined parametric inference for the 1-sample

problem, an estimation of SE, and construction of confidence

limits on the basis of this notion, assuming negative binomial
distribution. For the general case, Reed (1983) proposed the use
of jackknife to obtain confidence intervals for mean crowding.
In this study, we applied the bootstrap, which is known to per-
form better in general than the jackknife. According to the sim-
ulation results shown in Table II, this holds in this specific case
as well: bootstrap coverage with samples of 200 is better than
jackknife coverage with samples of 300. Bootstrap intervals are
superior not only with respect to coverage but also shorter by
1–4% than jackknife intervals. But our results suggest that even
if applying the bootstrap method, samples of hundreds of hosts
are necessary for a valid statistical inference in case of realistic
parasite distributions. Sample size needed also depends on the
scaling (linear, logarithmic, or other) of the crowding index.
The size of the parasite infrapopulation is a major determi-

nant of the environment of a parasite individual. The potential
physiological causes (competition for carbohydrates or the ef-
fect of growth inhibitors excreted by conspecifics or both) and
morphological consequences of crowding had been intensively
studied in cestodes for decades (see Roberts, 2000, for a recent
review). A diverse set of further parasites, including protists,
nematodes, acanthocephalans, and arthropods, also exhibit den-
sity-dependent variability in sex ratio, morphology, and life his-
tory. We hope that the presented statistical methodology will
help refine the analysis of crowding data. Most previous authors
who reported on the interaction between crowding and other
parasite characters did in fact quantify intensity rather than
crowding. Because mean intensity tends to predict mean crowd-
ing (Fig. 1), this approach is not at all fruitless. However, stron-
ger correlation with and better prediction of parasite characters
could be expected by introducing crowding into the model in
place of intensity, as a consequence of averaging on parasites
rather than on hosts.
To our best knowledge, this study is the first to introduce the
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application of these indices in parasitology, and also to outline
statistical tools to handle parasite-crowding data. We did our
best to provide free access to user-friendly software that helps
nonstatistician readers, and parasitologists in particular, to ex-
hibit these calculations easily. We propose that not only parasite
ecologists but parasite taxonomists also may benefit from the
use of the above methods in the future. Because parasite mor-
phology often co-varies with parasite crowding, it is advisable
for the taxonomist to include crowding measures into parasite
species descriptions. Obviously, if a species description is based
on parasites collected from 1 or a few host individuals, this
equals with providing the intensity data for each host. On the
other hand, if parasites were collected from several hosts, mean
crowding and its confidence interval should become an integral
part of future species descriptions.
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APPENDIX
For the proof of the biasedness of the crowding estimate, let

I1, I2, . . . In be an independent random sample taken from a
population having no negative and some positive values. Let f
be a monotone increasing function.
The sample mean f-crowding is defined as

n
I f (I )! j j n

j"1 , for 0 ( I! jn
j"1C̄ "  I! j

j"1
n f (0), for 0 " I ,! j

 j"1

and the population f -crowding is

E[I f (I )]1 1C " .
E(I )1

For linear crowding (with no rescaling) f(u) " u and for loga-
rithmic crowding

!f(u) " ln (u) " max(0, ln(u)).

Theorem: Suppose that according to the introduced notation
the expected values E(I1) and E(I1f(I1)) are finite. Then E(C̄) !
C, i.e., the bias of the sample mean crowding b " E(C̄) $ C
is nonpositive. Furthermore, if f(I1) is not constant on the pos-
itive part of the population, then the bias is strictly negative.
Proof: The sample mean crowding C̄ depends only on the pos-
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itive elements of the sample, so its expected value is a weighted
average of expected mean crowdings of samples taken from the
positive part of the population. More precisely, let Ek be the
expected value of a sample mean crowding of a k-element sam-
ple taken from the positive population, and p " P(I1 ) 0) the
proportion of this part of the population. Then

n n
k n$k¯E(C) " E p (1 $ p) .! k# $kk"0

On the other hand,

E(I f (I ) % I ) 0)1 1 1C " ,
E(I % I ) 0)1 1

so the population f-crowding depends also only on the positive
population. Therefore, we can restrict the proof of the theorem
to populations with positive values only. For n " 0 the bias b
" f(0) $ C is negative, because f increases monotonically. Sup-
pose n " 1. For symmetry, we have and

I f (I ) I   i i i¯    E(C) " nE and 1 " nE ,n n
   
   I I! !j j   j"1 j"1

i " 1, 2, . . . , n.

Hence,

 I1 b " nE [ f (I ) $ C]1n 
 I! j
 j"1

  I1  " nE E [ f (I ) $ C] % I ! I ! · · · ! I .1 2 3 nn  
  I! j
 j"1 

We show that the conditional expectations are nonpositive for
all possible conditions such as I2 ! I3 ! · ! In " a with any
fixed a value. This will prove the theorem. (For n " 1 the
condition equals zero, hence it can be omitted.) The bias for
layer a is

I1b " nE [ f (I ) $ C] .a 1& 'I ! a1

Furthermore,

1 1 I I1 1b " nE(I )E $ E · [ f (I ) $ C] .a 1 1& '[ ][ ]I ! a I ! a E(I ) E(I )1 1 1 1

Let us observe that this equality remains valid if C is replaced
by any other constant K value. Let

1
g(u) " f $ a and# $u

1 I1K " g E · .& '[ ]I ! a E(I )1 1

Then, we have

1 1 I1b " nE(I )E $ E ·a 1 & '[ ]# I ! a I ! a E(I )1 1 1

1 1 I I1 1# g $ g E · .# $ & '[ ][ ] $I ! a I ! a E(I ) E(I )1 1 1 1

The function g is monotone decreasing, so the 2 factors to mul-
tiply (before and after the symbol #) cannot have the same
sign, therefore their product is nonpositive. If f(I1) is not con-
stant, then the expression containing this product has a strictly
negative expected value. This completes the proof.
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