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Abstract
1.	 Phylogenetic studies are increasingly reliant on next-generation sequencing. 
Transcriptomic and hybrid enrichment sequencing techniques remain the most 
prevalent methods for phylogenomic data collection due to their relatively low 
demands for computing powers and sequencing prices, compared to whole- 
genome sequencing (WGS). However, the transcriptome-based method is con-
strained by the availability of fresh materials and hybrid enrichment is limited by 
genomic resources necessary in probe designs, especially for non-model 
organisms.

2.	 We present a novel WGS-based pipeline for extracting essential phylogenomic 
markers through rapid de novo genome assembling from low-coverage genome 
data, employing a series of computationally efficient bioinformatic tools. We 
tested the pipeline on a Hexapoda dataset and a more focused Phthiraptera 
dataset (genome sizes 0.1–2 Gbp), and further investigated the effects of se-
quencing depth on target assembly success rate based on the raw data of six in-
sect genomes (0.1–1 Gbp).

3.	 Each genome assembly was completed in 2–24 hr on desktop PCs. We extracted 
872–1,615 near-universal single-copy orthologs (Benchmarking Universal 
Single-Copy Orthologs [BUSCOs]) per species. This method also enables the de-
velopment of ultraconserved element (UCE) probe sets; we generated probes 
for Phthiraptera based on our WGS assemblies, containing 55,030 baits target-
ing 2,832 loci, from which we extracted 2,125–2,272 UCEs. Resulting phyloge-
netic trees all agreed with the currently accepted topologies, indicating that 
markers produced in our methods were valid for phylogenomic studies. We also 
showed that 10–20× sequencing coverage was sufficient to produce hundreds 
to thousands of targeted loci from BUSCO sets, and an even lower coverage (5×) 
was required for UCEs.

4.	 Our study demonstrates the feasibility of conducting phylogenomics from low-
coverage WGS for a wide range of organisms without reference genomes. This 

www.wileyonlinelibrary.com/journal/mee3
https://orcid.org/0000-0002-1371-266X
https://orcid.org/0000-0002-9347-3178
https://orcid.org/0000-0002-1407-7952
https://orcid.org/0000-0002-9096-3008
https://orcid.org/0000-0003-3573-7144
mailto:xtmtd.zf@gmail.com
mailto:yxluan@scnu.edu.cn


2  |    Methods in Ecology and Evolu
on ZHANG et al.

1  | INTRODUCTION

Advances in next-generation sequencing have greatly facilitated 
genome-scale data generation in the systematics community by 
enabling the collection of hundreds or thousands of loci for con-
structing phylogenies. Genomic partitioning (or “reduced repre-
sentation”) strategies, methods for enriching sequence libraries for 
selected genome regions (Turner, Ng, Nickerson, & Shendure, 2009), 
have dominated data collection approaches, given reduced com-
putational burdens and costs compared to de novo whole-genome 
sequencing (WGS) (Jones & Good, 2016). Representative methods 
employed in deep phylogenetics include transcriptomic (RNA-seq; 
Wang, Gerstein, & Snyder, 2009) and hybrid enrichment sequencing 
(Bi et al., 2012; Briggs et al., 2009; Faircloth et al., 2012; Lemmon, 
Emme, & Lemmon, 2012). In recent years, these techniques have 
been successfully used to addressed a wide variety of questions in 
systematic and evolutionary biology (Fernández et al., 2018; Misof 
et al., 2014; Oakley, Wolfe, Lindgren, & Zaharoff, 2012; Prum et al., 
2015; Young et al., 2016). Unfortunately, they have inherent practi-
cal limits (Lemmon & Lemmon, 2013). The transcriptomic approach 
requires a large quantity of high-quality RNA from fresh or care-
fully stored tissues (Cronn et al., 2012; McCormack, Hird, Zellmer, 
Carstens, & Brumfield, 2013). Hybrid enrichment techniques, such 
as anchored hybrid enrichment (AHE; Lemmon et al., 2012) and ul-
traconserved element (UCE) enrichment (Faircloth et al., 2012), have 
fewer limitations in material quality and quantity; but each specific 
group requires their own hybridization baits, and genomic resources 
are necessary to design these probe sets (Faircloth, 2017; Faircloth 
et al., 2012; Lemmon et al., 2012). This issue is exacerbated in small 
organisms, such as sucking lice or soil invertebrates, by few avail-
able genomic resources and a need for ample starting RNA/DNA. 
Perhaps the largest shortcoming of genome partitioning techniques 
is the narrow utility of the data generated, as these methods are 
rarely used outside of phylogenetic contexts (Allen et al., 2017).

The WGS has major advantages over genome partitioning meth-
ods in terms of material preparation, laboratory workload, diversity 
of targeted markers and future data utility. Until recently, the appli-
cation of WGS in phylogenomics has been restricted by both high 
costs and computational challenges. With the emergence of new 
Illumina platforms (HiSeq X Ten, NovaSeq), sequencing costs have 
rapidly decreased, now as low as $10 per gigabase pairs (Novogene, 
China, April 1, 2018), thereby increasing economic feasibility of 
larger studies. Although genome assemblies are available, annota-
tion and marker sorting are complicated and difficult processes, as 

seen in studies of birds (Jarvis et al., 2014). To address this issue, 
Allen, Huang, Cronk, and Johnson (2015) and Allen et al. (2017) de-
veloped an automated target restricted assembly method (aTRAM) 
which assembled targeted genes, rather than the entire genome, 
from WGS. Unfortunately, this approach still requires a relatively 
long time and a high computational memory because of BLAST tasks 
and assembly progress. Currently, all generalizable methods (RNA-
based, AHE, aTRAM) which target protein-coding genes are hin-
dered by laborious bioinformatic pipelines for orthology assignment 
and annotation. aTRAM may work for assembling multiple types of 
loci, such as UCEs or small circular genomes, but this has not been 
carefully tested (Allen et al., 2017).

Mining targeted loci directly from genome assemblies or WGS 
raw data is currently possible for some data types, including BUSCOs 
(Benchmarking Universal Single-Copy Orthologs; Waterhouse et al., 
2018), UCEs (Faircloth, 2016), mitogenomes (Al-Nakeeb, Petersen, 
& Sicheritz-Pontén, 2017; Dierckxsens, Mardulyn, & Smits, 2017; 
Hahn, Bachmann, & Chevreux, 2013) and restriction site-associated 
DNA (Fan, Ives, & Surget-Groba, 2018). BUSCO assessments hold 
the potential to ameliorate the difficulties in orthology assign-
ment by identifying near-universal single-copy orthologs (BUSCOs) 
(Waterhouse et al., 2018) based on the OrthoDB database (Zdobnov 
et al., 2017), a widely used resource for finding orthologs across di-
verse taxa. As such, BUSCOs have been applied to downstream phy-
logenetic inference in insects (Ioannidis et al., 2017), yeasts (Shen 
et al., 2016) and spiders (Fernández et al., 2018). However, assem-
bling complete genomes from WGS data remains prohibitively com-
putationally difficult, with even small-  to medium-sized genomes 
typically requiring days for completion on dedicated servers. New, 
fast and memory-efficient de Bruijn graph (DBG) algorithms enable 
quicker genome assemblies on desktop computers (Chikhi, Limasset, 
& Medvedev, 2016; Chikhi & Rizk, 2013), but they have yet to be 
incorporated into WGS pipelines for targeting specific loci.

This study tests and improves the efficiency of mining pop-
ular phylogenomic markers (BUSCOs and UCEs) directly from 
low-coverage WGS data by rapidly assembling entire genomes for 
datasets across a wide range of taxa. All raw sequencing data and ge-
nome assemblies used here are retrieved from published studies and 
were of relatively low coverage (most below 30×). We integrate a 
series of fast and computationally efficient bioinformatic tools. Our 
pipeline applies read normalization (removing high-coverage reads) 
and the Minia3 assembler (Chikhi & Rizk, 2013) to greatly speed up 
genome assembly and extraction of extract single-copy genes. All 
analytical steps can be executed on desktop PCs in a relatively short 

new approach has major advantages in data collection, particularly in reducing 
sequencing cost and computing consumption, while expanding loci choices.
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period of time (minutes to several hours for each step with the real 
datasets). We also test the assembly success rate of targeted loci 
at low to high depths of coverage on six insect genomes of various 
sizes (100–1,000 M). In doing so, we demonstrate the potential for 
this method to greatly improve current workflows for phylogenetic 
and other uses via WGS.

2  | MATERIALS AND METHODS

2.1 | Data generation

Our pipeline should be applicable to other similar datasets, even 
though we have demonstrated it only with Hexapoda datasets. The 
first dataset (A) includes 16 sucking lice species (Insecta: Phthiraptera) 
(Allen et al., 2017) and was selected for complete phylogenomic 
pipeline tests, including genome assembly, probe design, extraction of 
BUSCO/UCE loci and phylogenetic tree estimation (Table S1); initial 
assembled reads were subsampled to 4 G (11–34×, mean 24.19 ± 7.02, 
Table S5). A second real dataset B (14–47×, mean 26.38 ± 9.00, 
Table S6) of 21 species covering major hexapod lineages was used 
for BUSCO analyses, but not for UCE analyses because of great 

difficulties in designing a universal probe set for this highly divergent 
group. Two representative genomes, one small and one relatively large, 
were selected for each of five large orders (Hemiptera, Hymenoptera, 
Coleoptera, Lepidoptera and Diptera). These 21 species have genome 
sizes of 0.1–2 Gbp (Table S2). Six insect species with genome sizes 
ranging from 0.1 to 1 Gbp were used for assessments of assembly 
success rate (Table S3). Their UCE probe sets have been either 
published (Branstetter, Longino, Ward, & Faircloth, 2017; Faircloth, 
2017) or were designed here (Phthiraptera).

The general workflow of our WGS phylogenomics pipeline has 
four main parts: data generation, genome assembly, loci extraction 
and phylogenetic inference (Figure 1). All assembly and data-mining 
analyses of the real datasets were executed in the CentOS 7 oper-
ating system on i7-7700 CPU (four cores/eight threads) and 16/32 
G memory PCs, and others used a 24 cores/48 threads and 256 G 
memory server. Bioinformatic tools, custom scripts, and command 
details used in this study are given in the Supporting Information. 
Some steps can be omitted or replaced by other tools depending 
on the study's aims. Due to convenience and cost, raw sequencing 
data were typically generated on Illumina platforms (e.g., HiSeq 
2500/X Ten, NovaSeq). Note that whole-genome amplification may 

F IGURE  1 Flowchart of phylogenomics from whole-genome sequencing for assembling entire genomes. Bioinformatic tools used in each 
step are marked as italic. Dashed boxes indicate that these steps could be optionally omitted
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be helpful for small organisms when the starting quantity of DNA 
does not meet the minimum criteria for WGS library preparation, 
although it may increase repeats and induce chimeras.

2.2 | Genome assembly

Raw sequencing data were downloaded and converted into gzipped 
fastq format with NCBI SRA Toolkit v2.9.0 (SRA Toolkit Development 
Team). Raw data of some species were subsampled at smaller sizes 
with reformat.sh (one of the BBTools suite, Bushnell, 2014). The 
resulting reads were compressed into clumps and duplicates were 
removed with clumpify.sh (BBTools). We used bbduk.sh (BBTools) to 
perform quality trimming: both sides were trimmed to Q15 using the 
Phred algorithm, reads shorter than 15 bp or with more than 5 Ns 
were discarded, poly-A or poly-T tails of at least 10 bp were trimmed, 
and overlapping paired reads were corrected. To accelerate assem-
bly and render difficult datasets tractable, we down-sampled reads 
over high-depth areas at an average depth of 10× by normalization 
using bbnorm.sh (BBTools). Sequencing errors were corrected with 
Lighter v1.1.1 (Song, Florea, & Langmead, 2014).

Genome contigs were assembled with multiple k-mer strategies 
using Minia3 and a custom script inspired by the GATB-Minia-Pipeline 
(https://github.com/GATB/gatb-minia-pipeline). K-mer values of 21, 
41, 61, 81 were selected for read lengths around 100 bp, and 21, 41, 
61, 81, 101, 121 for reads around 150 bp. Regions of high hetero-
zygosity in diploid genomes are usually assembled as separate con-
tigs once a pair of allelic sequences exceed a threshold of nucleotide 
diversity. These redundant contigs were removed using Redundans 
v0.13c (Pryszcz & Gabaldón, 2016). Contig scaffolding and gap filling 
were performed with besst v2.2.8 (Sahlin, Vezzi, Nystedt, Lundeberg, 
& Arvestad, 2014) and GapCloser v1.12 in the SOAPdenovo2 suite 
(Luo et al., 2012) respectively. The input mapping file for scaffolding 
was generated with Minimap2 v2.9 (Li, 2018) and we then converted the 
mapping files into sorted, indexed BAM format using SAMtools v1.7 (Li 
et al., 2009). A final genome assembly was generated for subsequent 
analyses.

2.3 | Single-copy orthologs

busco v3.0.2 (Waterhouse et al., 2018) accepts both genomic and 
transcriptomic assemblies as inputs to generate complete, single-copy 
orthologs (BUSCOs) in “genome” mode using the predefined BUSCO 
sets. Assembly completeness is indicated by the ratio of complete 
and missing BUSCOs. A set of 1,658 loci was used for two hexapod 
datasets tested here. When the per cent of fragmented BUSCOs was 
>20% (331), BUSCO assessment was re-run by modifying the standard 
deviations (σ) of the mean BUSCO length to 2σ so that more BUSCOs 
were classified as “complete.” Loci merging and aligning, alignment 
trimming and concatenating, and matrices generation and statistics 
were executed in a custom script integrating mafft v7.394 (Katoh & 
Standley, 2013), trimAl v1.4.1 (Capella-Gutiérrez, Silla-Martínez, & 
Gabaldón, 2009) and FASconCAT-G v1.04 (Kück & Longo, 2014). 
Preliminary alignments were carried out using mafft with the L-INS-I 

strategy. Poorly aligned regions were automatically removed by the 
heuristic method automated1 with trimAl. Finally, we generated 50%–
100% complete matrices. The completeness of a matrix represents the 
lowest ratio of taxa for all alignments. For example, a 100-taxa matrix of 
75% completeness indicates that all alignments contain at least 75 taxa.

2.4 | UCE probe design and loci extraction

For groups lacking UCE probe sets, baits must be designed prior 
to loci identification. We followed Faircloth (2017) to design a bait 
set using 10 genome assemblies of Phthiraptera. The 10 species 
comprised three suborders (Anoplura, Ischnocera, Amblycera) 
and 10 families. One of them (Pediculus humanus) was selected 
as the base genome (accession GCA_000006295.1). The other 
nine exemplar genomes were assembled from WGS as in previ-
ous steps. Osborniella crotophagae (Amblycera) was treated as the 
“outgroup.”

We simulated error-free, paired-end reads of 100 bp at a cover-
age of 2× with ART (Huang, Li, Myers, & Marth, 2012). The nine spe-
cies’ simulated reads were then aligned to the base genome using 
Stampy v1.0.32 (Lunter & Goodson, 2011) with a substitution rate 
of 0.05, and unmapped reads were removed using SAMtools. We 
merged overlapping or nearly overlapping intervals with bedtools 
(Quinlan & Hall, 2010). Putatively conserved intervals shared be-
tween nine exemplar species and the base genome were removed 
with phyluce_probe_strip_masked_loci_from_set (a python script 
within phyluce v1.5.0, Faircloth, 2016). Shared, conserved loci be-
tween the base and exemplar species were determined with phy-
luce_probe_get_multi_merge_table. We extracted sequences with 
a length of 160 bp from the base genome that correspond to the 
loci we identified. A temporary bait set was designed targeting 
the above extracted loci with phyluce_probe_get_tiled_probes. 
Potentially problematic baits with >25% repeat content and GC 
content outside of the range of 30%–70% were removed. Duplicate 
baits were removed from this temporary bait set. We aligned the 
duplicate-free temporary baits against exemplar genomes with phy-
luce_probe_run_multiple_lastzs_sqlite to check if those loci could 
be located. FASTA data were then extracted from each of the exem-
plar genomes with phyluce_probe_slice_sequence_from_genomes. 
We determined those loci detected consistently across exemplar 
taxa with phyluce_probe_get_multi_fasta_table. We then designed 
the final bait set targeting those loci by tiling baits across each locus 
in each of 10 Phthiraptera genomes with phyluce_probe_get_tiled_
probe_from_multiple_inputs. Putative duplicates were removed 
from the resulting bait set.

For UCE loci extraction, we aligned the probes to the genome 
sequences with phyluce_probe_run_multiple_lastzs_sqlite. FASTA 
sequences matching UCE loci were extracted from each genome by 
slicing 400 bp flanking region from both sides with phyluce_probe_
slice_sequence_from_genomes. We then matched contigs to baits 
with phyluce_assembly_match_contigs_to_probes and phyluce_as-
sembly_get_match_counts, and extracted all loci to a FASTA file with 
phyluce_assembly_get_fastas_from_match_counts. Similar to the 

https://github.com/GATB/gatb-minia-pipeline
info:ddbj-embl-genbank/GCA_000006295.1
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above BUSCO extraction, UCE aligning, trimming, concatenating and 
matrix generation and statistics were executed in a custom script.

2.5 | Phylogenetic analyses

The primary goals of this study were not phylogenetic, with trees used 
largely for checking the concordance of our methods with prior stud-
ies, and the analyses chosen reflect this. Some analyses, which may 
be also helpful for phylogenetic reconstructions, were omitted, includ-
ing gene domain identification, sequence compositional heterogeneity, 
missing data distribution, locus screening, etc. We constructed the phy-
logenetic trees using maximum likelihood (ML) and coalescent-based 
species tree (ASTRAL) methods for both UCE and BUSCO matrices. 
Matrices of 100% (no missing taxa for all alignments) and 90% com-
pleteness (at most 10% missing taxa) were analysed as exemplars for 
Phthiraptera and Hexapoda respectively. Five matrices were gener-
ated: two BUSCO protein matrices (BUSCO_pro_A/B), two BUSCO 
nucleotide matrices (BUSCO_nuc_A/B) and one UCE nucleotide ma-
trix (UCE_nuc_A). ML reconstructions were performed in iq-tree v1.6.3 
(Nguyen, Schmidt, von Haeseler, & Minh, 2015) using partitioning 
schemes and substitution models that were automatically estimated 
with ModelFinder (Kalyaanamoorthy, Minh, Wong, von Haeseler, & 
Jermiin, 2017). Node supports were estimated using 1,000 ultrafast 
bootstrap (Hoang, Chernomor, von Haeseler, Minh, & Vinh, 2018) and 
1,000 SH-aLRT replicates (Guindon et al., 2010). We restricted the 
procedure to a subset of substitution models with the options “-mset” 
(Hasegawa-Kishino-Yano [HKY] and generalised time-reversible [GTR] 
models for nucleotides, WAG and LG for proteins), and implemented 
the relaxed hierarchical clustering algorithm (Lanfear, Calcott, Kainer, 
Mayer, & Stamatakis, 2014) with the setting “-rcluster 10.” For species 
tree estimation, gene trees were first estimated with iq-tree on individ-
ual gene alignments. Species trees were estimated from gene trees with 
astral-iii v5.6.1 (Zhang, Rabiee, Sayyari, & Mirarab, 2018). Local branch 
supports on these species tree were estimated from quartet frequen-
cies (Sayyari & Mirarab, 2016).

2.6 | Tests with varying sequencing coverage

To test the assembly success rate for our target loci, we performed the 
pipeline of genome assembly and loci extraction at depths of coverage 
of 1×, 5×, 10×, 20×, 30× with six insect species. Their genome sizes 
varied from 108 to 996 Mbp (Table S3). Raw input sequencing data 
were generated using reformat.sh on real data (Table S3).

3  | RESULTS

3.1 | Genome assembly

For dataset A, each Phthiraptera genome was assembled in 
2–3 hr each on a 4-core/8-thread and 16 G memory PC. For data-
set B, 21 hexapod genomes were assembled in 2–24 hr each on 
4-core/8-thread and 16/32 G memory PCs. Basic statistics of assem-
blies and computational resource use are summarized in Tables S5 
and S6. Number of scaffolds, maximum read length, N50 length, and 
GC content differed greatly among species.

3.2 | Extraction of single-copy orthologs

For dataset A, the detection rate of BUSCOs (complete and single-
copy/duplicated + fragmented) reached 88.7%–98.2%. Among them, 
1,162–1,615 (70.0%–97.4%) were classified as complete, single-copy 
BUSCOs with an average of 1,474 loci (88.9%) (Figure 3; Table S5). 
The final concatenated Phthiraptera matrices contained 475–1,627 
BUSCOs of 211,055–688,462 amino acids or 630,964–2,078,753 
nucleotide sites at a completeness level of 50%–100% (Figure 2).

For dataset B, the detection rate of all BUSCOs from WGS reached 
65.3%–99.0% (Figure 2). Among them, 872–1,586 (1,310 ± 182.96) 
were complete, single-copy BUSCOs (Figure 4; Table S6). The pro-
portion of fragmented and missing BUSCOs increased with genome 
size. Nine BUSCO analyses were re-run with modified length cut-
offs because of the high proportion of fragmented BUSCOs. The 

F IGURE  2 Number of loci and sites 
in the concatenated matrices of differing 
completeness for two real datasets. Both 
numbers (within parentheses) of amino 
acid and nucleotide sites are shown for 
complete single-copy Benchmarking 
Universal Single-Copy Orthologs 
(BUSCOs)
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final concatenated hexapod matrix contained 54–1,627 BUSCOs of 
18,873–520,769 amino acids or 59,565–1,624,206 nucleotide sites 
at a completeness of 50%–100% (Figure 2).

3.3 | Extraction of UCEs

Ultraconserved element analyses were performed on the Phthiraptera 
dataset. We simulated 1.83–3.13 M reads (mean 2.37 ± 0.43 M) from 
each exemplar genome assembly, and approximately 2.56–32.09% 
(mean 9.94 ± 8.64%) of these reads mapped to the base genome. We 
identified 5,356 conserved loci that were shared among P. humanus and 
all exemplar lineages. We designed 8,769 temporary baits from the base 
genome that target 4,743 conserved loci. A set of 2,882 conserved loci 
which were shared by P. humanus and the other nine species was selected 
for the final probe design. We then designed 56,001 baits targeting 
these 2,882 conserved loci based on all 10 taxa. Following removal of 
duplicates, the principle Phthiraptera bait set for UCE contained 55,030 
baits targeting 2,832 conserved loci (named Phthiraptera-2.8Kv1).

Of the 2,832 targeted UCE loci, 75.0%–80.2% (2,125–2,272; 
average 2,205 = 77.9%) were extracted from 15 Phthiraptera spe-
cies (Table S5). The final concatenated Phthiraptera matrix contained 
1,468–2,132 UCEs of 1,209,520–1,752,085 nucleotide sites at a 
completeness of 50%–100% (Figure 2).

3.4 | Phylogenetic inference

The Phthiraptera matrix of 100% completeness was divided into 64, 
76 and 169 partitions for matrices BUSCO_pro_A, BUSCO_nuc_A and 
UCE_nuc_A respectively. All ML and ASTRAL trees (Figures 3 and S1–S5) 
generated the same topology, congruent with phylogenies from the pre-
vious study (Allen et al., 2017), although supports at some nodes differed 
slightly. A node for (Hoplopleura arboricola + Linognathus spicatus) from 
UCE_nuc_A matrix had very low support values: 24.2/54 (Figure S2).

The Hexapoda matrix of 90% completeness was divided into 198 
and 67 partitions for matrices BUSCO_pro_B and BUSCO_nuc_B re-
spectively. Both ML and ASTRAL species trees (Figures 4 and S6–S8) 
generated topologies largely congruent with phylogenies from the pub-
lished study (Misof et al., 2014). Only the positions of Thysanoptera and 
Psocodea were unstable among trees, indicated by lower node sup-
ports, possibly a result of inadequate sampling and crude phylogenetic 
analyses.

3.5 | Impacts of varying sequencing coverage

We tested the impact of sequencing coverage and genome size on the 
capture success rate of BUSCOs and UCEs using our pipeline. Basic sta-
tistics of genome assembly and loci extracted from data at the coverage 

F IGURE  3 Maximum likelihood tree of Phthiraptera dataset based on concatenated Benchmarking Universal Single-Copy Orthologs 
(BUSCO) protein matrix of 100% completeness. Only node support values (SH-aLRT/UFBoot) below 100 are given in the tree. Right bar 
charts show BUSCO proportions classified as complete (C, blues), complete single-copy (S, light blue), complete duplicated (D, dark blue), 
fragmented (F, yellow) and missing (M, red)
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of 1×, 5×, 10×, 20×, 30×, and original reference assembly are summarized 
in Table S7. Most statistics reached convergence after 20×. The number 
of single-copy genes extracted from assemblies using BUSCO showed a 
similar trend, with an average of 3, 211, 914, 1,266, 1,330 and 1,543 for 
1–30× and the reference genome respectively (Figure 5a; Table S7). UCEs 
required lower coverage, as the loci extracted from assemblies stabilized 
above just a coverage of 10× (Figure 5b; Table S7). The mean length of 
extracted UCEs increased significantly between coverages of 5–10×, and 
reached around 900 bp at the coverage of 20–30× (Figure 5c; Table S7).

4  | DISCUSSION

We successfully extracted hundreds to thousands of targeted loci 
from a single Illumina short-read library by assembling entire genomes 
using limited computational resources. Our study demonstrates the 
economic feasibility of phylogenomics using low-coverage WGS for 
a wide range of organisms with small-to-moderate (2,000 Mbp) ge-
nome sizes. Low coverage (10–20×) is feasible for BUSCOs and UCEs 

(Figure 5). A minimum coverage of 10× is recommended, consistent 
with the coverage requirement for aTRAM (Allen et al., 2017). There 
is little difference between 20× and 30× coverage in genome as-
semblies and number of BUSCOs. A coverage of 5× may be available 
for UCE data mining because the probe set was designed by simulat-
ing reads at a coverage of 2×. Notably, low coverage (<10×) usually 
generates relatively short length for UCEs. There are typically fewer 
BUSCOs extracted from larger genomes (>1 Gbp) than from smaller 
genomes (Figures 4 and 5a) because of the difficulties in assembling 
large genomes using short reads and a single library of small insert 
fragment sizes (see assembly statics in Tables S6 and S7). However, 
the number and length of UCEs extracted do not appear to be  
affected by genome size (Figure 5b,c).

4.1 | Merits of WGS

Generally, WGS outperforms transcriptomic and hybrid enrichment 
sequencing in terms of material preparation and laboratory protocol 
(Allen et al., 2017; Lemmon & Lemmon, 2013). WGS requires a lower 

F IGURE  4 Maximum likelihood tree of Hexapoda dataset based on concatenated Benchmarking Universal Single-Copy Orthologs 
(BUSCO) nucleotide matrix of 90% completeness. Only node support values (SH-aLRT/UFBoot) below 100 are given in the tree. Right bar 
charts show BUSCO proportions classified as complete (C, blues), complete single-copy (S, light blue), complete duplicated (D, dark blue), 
fragmented (F, yellow) and missing (M, red). Asterisks represent results from BUSCO assessments using new length cut-offs
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quantity of starting DNA, typically just 50–200 ng for an Illumina li-
brary. This method is possible even for very small organisms (size 
<1 mm, DNA < 10 ng) when augmented with whole-genome amplifi-
cation using a multiple displacement amplification method (Dean et al., 
2002; Lasken, 2009), comparable to DNA inputs in UCE protocol.

High WGS costs have previously hindered its application in phylog-
enomics, as systematists generally prefer to sequence as many taxa as 
possible. Now, the sequencing cost (library preparation of $30 and se-
quencing of $10/Gb) for a typical genome (size 0.1–1 G) with an average 
coverage of 15× is $45–180 on the HiSeq X Ten or NovaSeq platforms, 
a price not dissimilar to transcriptomic or hybrid enrichment sequencing 
(price from Novogene, China, April 1, 2018). Notably, the UCE approach 
via WGS may costs less because it requires lower coverage.

One of the biggest benefits of WGS approaches is that they are much 
more flexible in selection of loci type, thereby maximizing the use of the 
data collected (Allen et al., 2017). Entire genomes assembled from WGS 
have theoretical potential for all types of targeted regions, rather than for 
only one set, for example, mitochondrial genome assembly (Dierckxsens 
et al., 2017; Hahn et al., 2013). This procedure may even be useful for 
generating population genomics data, as several genomic population 
studies indicate that single nucleotide variants (SNVs) can be detected 
from WGS at low (3–12×) or extremely low (1×) coverage (Bizon et al., 
2014; Rustagi et al., 2017). More genomic regions of interest should be 
tested in future studies, such as exons, introns, AHE loci and others.

4.2 | WGS analytical pipeline

Tremendous computational demands of time and resources, as well 
as high cost, are additional major challenges for WGS projects. A 

complete genome assembly of a eukaryotic organism usually requires 
several days or weeks on a dedicated server or cluster, which is not 
feasible for many small laboratories. With our method, using real 
datasets, we executed genome assemblies and extracted BUSCOs 
in 2–24 hr each on desktop PCs (Tables S5 and S6). This procedure 
will take more time with larger genomes but it will still drastically 
improve upon current time frames.

The proposed novel pipeline employs a series of computationally 
efficient bioinformatic tools, enabling execution of all analyses on a 
desktop PC in minimal time. Its workflow is flexible, custom-made 
and some steps may be omitted or replaced by other tools depend-
ing on study aims and genome features. Many analyses requiring ad-
ditional configuration files and original manuals are simplified with 
our custom scripts, which automatically generate them. When the 
required tools are ready, the main steps can be implemented using a 
single bash script. Compared to aTRAM, another phylogenomic ap-
proach from low-coverage WGS, our pipeline can be executed in a 
shorter time on a desktop computer.

Our optimization steps primarily focus on genome assembly, par-
ticularly read normalization and low-consumption assembly. De novo 
assemblies that rely on DBG usually consume a lot of memory. To 
speed up assembly and reduce computational burdens, the assembler 
Minia3 uses a novel data structure to construct compacted graphs 
(Chikhi et al., 2016). K-mer–based normalization can also dramatically 
accelerate assembly by removing redundant short reads with little 
to no change in the overall assembly quality (Brown, Howe, Zhang, 
Pyrkosz, & Brom, 2012). With the tool BBNorm, regions below the 
target coverage will be retained and those with coverage above the 
target will be reduced to the target, further simplifying analyses.

F IGURE  5  Impact on capture success 
rate of targeted loci number upon varying 
sequencing coverage for (a) complete 
single-copy genes (Benchmarking 
Universal Single-Copy Orthologs) and 
(b) ultraconserved elements (UCEs), as 
well as mean length of UCEs (c). Species 
are separated by different colours and 
numbers. “Reference” on the x axis 
represents the best genome assembly 
published for this species. Reference 
genome size for each species is shown 
following the species name
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Streamlining is also possible for post-assembly analyses (Figure 1). 
Heterozygous regions containing one or more heterozygous sites can 
be problematic for downstream analyses, such as paralog identification 
and collinearity analyses (Pryszcz & Gabaldón, 2016). Most phyloge-
netic samples are collected from wild populations rather than inbreed-
ing strains and thus may have a relatively high rate of heterozygosity. 
Removal of these redundant contigs is often useful in generating more 
complete, single-copy than duplicated BUSCOs and reducing the subse-
quent computational burden (Table S7). The process is further simplified 
with BUSCO, as the use of single-copy orthologs avoids the laborious 
analyses of orthology assignment and annotation while still assessing 
genome completeness (Waterhouse et al., 2018). The present version, 
busco v3, includes universal gene sets for most biological lineages. UCE 
probe sets are still lacking in most metazoan groups, but our method 
also enables quicker and more efficient design of probe sets via WGS.

4.3 | Current limits of low-coverage WGS approach

Undoubtedly, higher quality genome assemblies will improve the 
extraction of targeted loci. Low-coverage, short-read sequencing and 
a single library of short insert size certainly perform worse for large 
genomes, as shown in this study (Figure 4; Table S6). This is because 
short reads increase the complexity of the assembly algorithms, 
especially for repeated or heterozygous regions (Miller, Koren, & 
Sutton, 2010), although high coverage and longer library insert sizes 
can overcome some issues (Wetzel, Kingsford, & Pop, 2011). Low 
N50 and a high proportion of fragmented BUSCOs indicated inferior 
assembly contiguity. At the current stage, there are few methods 
for amelioration except for performing multiple library strategies or 
using new sequencing platforms (PacBio/Nanopore), which are more 
expensive. In spite of poor assembly quality for large genomes, BUSCO 
assessments can provide hundreds of fragmented and complete 
orthologs for further phylogenomic analyses. Contiguity may also 
be improved by relaxing the length cut-off of “complete” BUSCOs so 
that more loci may be used. Species-specific training parameters for 
Augustus prediction (Keller, Kollmar, Stanke, & Waack, 2011) can also 
improve BUSCO performance. In contrast to BUSCOs, UCEs and SNVs 
compatible with lower coverage have fewer limits in terms of target 
capture. In addition, phylogenetic signal and the efficiency of predefined 
reference genes are rarely tested, important procedures absent in most 
studies. Therefore, the construction of lineage-specific datasets should 
substantially improve both the mining accuracy of linage-specific, 
single-copy orthologs and resultant phylogenetic estimates.

Although our pipeline performed well across insect orders, its 
efficacy must be tested in more organisms, as well as more genomic 
regions of interest. With the development of new sequencing and 
assembly techniques, we believe that WGS will increasingly domi-
nate phylogenetic studies.
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