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The role of louse-transmitted diseases in historical plague 
pandemics
Rémi Barbieri, Michel Drancourt, Didier Raoult

The rodent-murine ectoparasite-human model of plague transmission does not correspond with historical details 
around plague pandemics in Europe. New analysis of ancient genomes reveal that Yersinia pestis was unable to be 
transmitted by rat fleas until around 4000 Before Present, which challenges the rodent-murine ectoparasite-human 
model of plague transmission and historical details around plague pandemics in Europe. In this Review, we 
summarise data regarding Y pestis transmission by human lice in the context of genomic evolution and co-
transmission of other major epidemic deadly pathogens throughout human history, with the aim of broadening our 
view of plague transmission. Experimental models support the efficiency of human lice as plague vectors through 
infected faeces, which suggest that Y pestis could be a louse-borne disease, similar to Borrelia recurrentis, 
Rickettsia prowazekii, and Bartonella quintana. Studies have shown that louse-borne outbreaks often involve multiple 
pathogens, and several cases of co-transmission of Y pestis and B quintana have been reported. Furthermore, an 
exclusive louse-borne bacterium, namely B recurrentis, was found to be circulating in northern Europe during the 
second plague pandemic (14th–18th century). Current data make it possible to attribute large historical pandemics to 
multiple bacteria, and suggests that human lice probably played a preponderant role in the interhuman transmission 
of plague and pathogen co-transmission during previous large epidemics, including plague pandemics.
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Introduction
Insights concerning historical plague pandemics have 
challenged assumptions about the ecology and trans­
mission of the causative agent, Yersinia pestis, with 
cutting-edge technologies such as whole genomes 
sequencing of ancient samples giving us the ability to 
further explore this issue. The historical framework 
proposing transmission from rats to rat fleas to humans 
was initially proposed in three previous historical plague 
pandemics. The first pandemic began with the Plague 
of Justinian from circa 541 to 544 CE and continued 
for about two centuries in Continental Europe and the 
Mediterranean basin until 750 CE, killing probably 
between 0·1% and 50·0% of the population.1 The second 
pandemic began with the so-called Black Death episode 
from 1346 to 1353,2 claiming about 25 million deaths and 
devastating medieval Europe in an endemic way until the 
middle of the 18th century (the last epidemic reported in 
western Europe is the one affecting Marseille from 
1720 to 1722). The current third pandemic began in 
1772 in the Chinese province of Yunnan2 before hitting 
Hong Kong in 1894 and then spreading around the world 
via railroads and steamboats.3 It is estimated that this 
current pandemic has already claimed the lives of more 
than 13 million people.4 Yet it is not clear whether the 
presence of rats and their fleas at the time of these 
pandemics were necessarily in sufficient abundance. In 
historical texts, the description of a fever associated with 
buboes (ie, swollen inflamed lymph nodes) has been 
pathognomonic of the plague since Justinian times, 
when it was clearly described by Procopius.5 The 
Y pestis lineage responsible for the Plague of Justinian 
(541–750 CE)6–9 represented a (now extinct) clade that was 
distinct from the Black Death episode that decimated 
Europe in the Middle Ages (1346–1353) during the 
second plague pandemic (14th–18th century).10–16 Despite 

the independency of these strains, the clinical symptoms 
were similar during the first and second pandemics.1,9,12,15 
Indeed, the Black Death was rather a word coined to refer 
to plague epidemics in the symbolic register (with a 
negative connotation) than a denomination used by 
contemporaries to describe the clinical manifestation of 
the plague. Therefore, the Black Death was later wrongly 
associated with purpuric fever or haemorrhagic fever.17

In 1894, during the third pandemic, Alexandre Yersin’s 
investigations done in Hong Kong led to the discovery of 
the Y pestis bacteria, the causative agent of the plague.3 In 
1898, Paul-Louis Simond completed the epidemiological 
cycle proposed 4 years earlier by Yersin.18 He reported 
an indisputable mechanism by which infected fleas 
(Xenopsylla cheopis) could spread Y pestis from one murid 
to another.19 The discovery of late-stage biofilm-dependent 
transmission by X cheopis20,21 then made it possible to 
study 25 Y pestis genes involved in the transmission of 
the plague by fleas.22 In particular, the ymt gene, which 
codes for a phospholipase D hydrolase and allows Y pestis 
to survive inside the flea’s digestive tract, is considered to 
be essential.23 These studies showed that X cheopis is 
the vector transmitting plague from rats to rats, with a 
possible accidental transmission to human beings. Later, 
new methods of whole genome sequencing of ancient 
DNA completely undermined this vision and molecular 
analysis traced the plague back to at least 5000 Before 
Present (BP),24 detecting it not only on the arid shores 
of the Mediterranean but also in the northernmost 
part of Europe, hence in heterogeneous ecological 
environments.24–30 This finding provided an unexpected 
opportunity to question the classic epidemiological trans­
mission cycle from rats to rat fleas to humans. In this 
Review, we summarise data regarding Y pestis 
transmission by human lice in the context of genomic 
evolution and co-transmission of other major epidemic 
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deadly pathogens throughout human history, with the 
aim of broadening our view of plague transmission.

Ancient plague transmission explained by 
paleomicrobiology
Palaeomicrobiology studies make it possible to consider 
another model of plague diffusion that does not feature 
rats and rat fleas. Indeed, between 2011 and 2020, 
88 ancient Y pestis genomes were sequenced.7–9,12–16,24–30 
These genomes were all recovered from Eurasian 
samples of teeth or bones and dated from 5000 BP 
(Sweden)24 to 1722 (France),14 thus covering the first two 
historical pandemics. Complete genome analysis showed 
the systematic presence of plasmid virulence-associated 
genes, such as the pla gene (pPCP1 plasmid) that is 
coding for a plasminogen activator or the CAF-1 gene 
that is responsible for antiphagocytic activity (pMT1 
plasmid); both of these genes are associated with 
human mortality.31,32 Furthermore, the archaeological 
identification of several individuals in the same grave, 
combined with the molecular presence of plague 
virulence-associated genes, indicated that plague was 
already a deadly epidemic disease during the Neolithic 
and Bronze Age, as further described during historical 
pandemics.1,33 Whereas 72 of 88 available ancient 
genomes do harbour the pMT1-encoded ymt gene, 16 of 
88 ancient Y pestis genomes dating from 5000 BP 
(Sweden) to 3701 BP (Russia) lack this gene,24–27 which is 
involved in the survival of Y pestis in the flea’s gut and is 
essential in effective plague flea transmission.34 Spyrou 
and colleagues30 indicate that the ymt gene probably 
appeared approximately 3800 years ago during the Early 
Bronze Age and that both the Y pestis flea-adapted and 
non-adapted variants circulated in Eurasia throughout 
the Bronze Age. These findings indicate that, for approxi­
mately 1200 years, fatal plague did not necessarily require 
rat fleas.24–27,30 Regarding these results, Y pestis appears to 
be an old human pathogen present throughout Eurasia, 
even in the most northern part of Eurasia. Furthermore, 
the geographical location of the strains, combined with 
an absence of the ymt gene (in Austria, Croatia, Estonia, 
Germany, Lithuania, Norway, Poland, Russia, and 
Sweden),24–27 does not seem to support a transmission 
mechanism mediated by rats and rat fleas.35–37 The 
presence of the pla gene in all ancient genomes is an 
unequivocal indicator that plague could be bubonic 
and therefore transmitted by arthropods (ie, via the 
introduction of Y pestis in human tissues following 
biting).23 Genetic and archaeological studies38–40 provide 
evidence that the only known competent plague vectors 
present during the Neolithic and Bronze Ages in Eurasia 
were human fleas (Pulex irritans)39,40 and the human 
louse (Pediculus humanus subspecies).38,41,42 However, 
P irritans is known to be a poor plague vector22,43 with a 
low blocking capacity.44 Some authors have hypothesised 
that P irritans could have been involved in the spread of 
plague during the second pandemic43–45 but currently, the 

transmission rates obtained in the laboratory using early 
phase transmission (0·14%) are too low to consider 
P irritans as an efficient vector.20,22,46,47 Therefore, the most 
parsimonious hypothesis is that the human-to-human 
transmission of the plague at this time might have 
mostly involved human lice, given the absence of 
effective flea vector (such as X cheopis) and the presence 
of all associated virulence genes involved in deadly 
bubonic plagues.

The rat-and-flea model and the historical 
demography of the second pandemic
Beyond transmissions during the Neolithic and Bronze 
Age, the epidemiological rat–rat flea–human schema 
cannot explain the speed and magnitude of the Black 
Death, during which the spread was faster than during 
the current third pandemic.36,43,48 In particular, this model 
is not compatible with the 1·5–6 km/day speed of 
dissemination of the Black Death as calculated using 
historical sources.49 Occasionally, this scheme cannot 
even be implemented given the absence of its pro­
tagonist.35 For example, in northern Europe, there are 
few archaeological records of Rattus rattus in the Middle 
Ages, which appears to have been unevenly distributed 
in coastal towns.36,37 Current archaeozoological data do 
not appear to be compatible with the classic patterns 
of Y pestis35–37,50 given the low density of rat bones 
found from medieval archaeological sites in Nordic 
countries.36,37 Some authors argue, however, that 
the scarcity of rats in medieval Europe51 is compatible 
with the classic model of transmission (from rats 
to rat ectoparasites) observed in India during the 
third pandemic.33,52,53 These conclusions are based on 
unsupported assertions47 or on mathematical models in 
which the plague can persist in relatively small rodent 
populations.54 Nevertheless, the current parsimonious 
hypothesis is that it is very unlikely that rats could have 
played a meaningful role in vectorisation of the plague 
in Nordic countries.36,37,47 For example, in the 15th century, 
two waves of plague killed approximately 50% of 
Icelanders despite an attested absence of rats.35 However, 
this observation did not exclude the presence of other 
cold-resistant mammals that could have served as 
intermediate hosts. Finally, although it is acknowledged 
that the Oriental rat flea (X cheopis) has been the 
main vector of plague epidemics since the end of the 
19th century, its role in disseminating the second 
pandemic is controversial because there are no fossil 
records of X cheopis in Europe. However, remains of 
P irritans have been discovered in these latitudes55—a 
finding that is consistent with the fact that the northern 
European climate might not be conducive to this 
Oriental flea species, which were adapted to the warmer 
climate of southern Europe, as evidenced by their 
involvement in the third pandemic’s plague outbreak in 
four cities in southern Europe (ie, Barcelona, Malta, 
Marseille, and Ajaccio).56



www.thelancet.com/infection   Vol 21   February 2021	 e19

Review

Studies have shown the incapacity and inefficiency of 
Y pestis transmission when X cheopis is exposed to low 
temperatures (≤12·5°C).57–59 This finding questions the 
causes of the plague, suggesting that the plague has been 
caused by haemorrhagic fever viruses60 without any 
scientifically identified causative agent. Accumulated 
evidence in favour of Y pestis indicates that the plague had 
the same clinical features and mortality and dissemination 
rates without rats and rat fleas, as illustrated by the 
northern epidemics.35,50 Furthermore, studies on plague 
and climate seem to indicate that the timing of the second 
plague pandemic is correlated with hot Mediterranean 
summers in southern Europe, which are compatible with 
flea transmission.61 By contrast, in the southern Baltic 
states and Iceland, plague was driven by a cold climate 
(<10°C)57 or a climate consistent with the Little Ice Age (ie, 
a period of cooling that occurred after the Medieval 
Climatic Optimum).62 Such temperatures are completely 
incompatible with rat flea transmission but consistent 
with transmissions through other vectors, such as human 
lice, which can live in the heat of clothes and could have 
been an effective Y pestis vector following the 1·5–6km/day 
speed of plague dissemination49 that corresponds to 
human travel through Eurasia to the most northern places 
in Europe.55 In summary, in the context of the plague 
epidemic, the two main methods of transmission are 
ectoparasites and aerosols. Considering that interhuman 
transmission of plague through aerosols has shown to be 
ineffective unless particular conditions are met,63,64 the 
most plausible form for the ancient plagues is the bubonic 

form. Particularly during plague outbreaks in Nordic 
countries, lice are the most plausible vector proposed 
(figure 1).

History and role of lice in human infection
Lice are among the oldest human ectoparasites recorded. 
Lice are estimated to have appeared around 100 million 
years ago, and speciation between chimpanzee lice 
(Pediculus schaeffi) and human lice (P humanus sub­
species) occurred approximately 5·6 million years ago.38 
Ancient human lice have been recovered from all 
continents with the exception of Oceania. Lice dated as 
being 9000 years old were retrieved from textiles in 
Israel.65 Lice have also been directly identified on 
mummified human bodies in Egypt and pre-Columbian 
America.75,76 Regarding European prehistory, ancient lice 
have been found in textiles in Austria.66

Based on these observations, one of the main candidates 
(with P irritans) for a vector of plague in the Bronze Age 
are human lice. Furthermore, the same model can 
probably be applied to the great medieval epidemics in 
northern Europe, where the presence of lice has been 
shown.55 These outbreaks had a high rate of mortality and 
led to the decline of northern populations.35,50

Louse-borne diseases are able to cause immense 
epidemics, as evidenced by contemporary observations. 
For example, during the Napoleonic wars, approximately 
30% of Napoleon’s soldiers died of typhus when they were 
infested with lice in Vilnius, Lithuania, during the Russian 
campaign.67 Millions of people also died of louse-borne 

Figure 1: Timescale of paleomicrobiological data related to louse-borne pathogens from 100 000 BP to the 19th century
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relapsing fever, typhus, and probably trench fever 
transmitted by lice during the Russian Revolution and 
World War 2.77 The last severe outbreak of louse-borne 
diseases was observed in Burundi in 1997, causing 
probably 10 000 deaths and 100 000 infections.78

The role of lice as a vector of Rickettsia prowazekii was 
first identified by Charles Nicolle, who earned a Nobel 
Prize for this finding. Nicolle noted that patients whose 
clothes were removed and who were bathed during 
hospital admission did not transmit typhus to other 
people in the hospital, including health-care workers.79 
Examining the clothes of patients revealed the only 
possible vector and source of transmission, the louse. 
Later, the louse was found to be responsible for trench 
fever during World War 1.80 Finally, the presence of 

Borrelia recurrentis (the causative agent of relapsing fever) 
in lice was identified as early as the 19th century in 
Ireland.81

Among louse-borne outbreaks, therefore, it is generally 
difficult to determine which diseases are caused by which 
pathogens. Indeed, among Napoleon’s soldiers, 
R prowazekii and Bartonella quintana were identified 
retrospectively as co-occurring during the same epidemic, 
but B recurrentis was not tested for.65 In Burundi, the 
cocirculation of R prowazekii and B quintana during the 
same epidemic was highlighted, but B recurrentis was not 
tested for.67 In historical studies in Douai, France, done 
by molecular testing of the dental pulp, the co-occurrence 
of R prowazekii and B quintana was highlighted.70 These 
studies represent the first evidence of R prowazekii in 
Europe. The cocirculation of Y pestis and B quintana has 
also been observed in Venice, Italy, and Bondy, France,71,72 
suggesting a coupled epidemic (figure 2). Thus, given 
that many infectious diseases might be transmitted by 
the same mechanism, epidemic agents could be 
considered responsible by association (figure 2).

The discovery of two microorganisms during the same 
pandemic is probably indicative of the fact that both 
pathogens have the same mechanism of transmission, 
allowing us to hypothesise that Y pestis and B quintana 
were co-transmitted by body lice in Venice and Bondy.

Possible role of lice in ancient plague outbreaks
Observation of the natural infection of body lice (Pediculus 
humanus humanus) from plague-infected humans began 
at the beginning of the 20th century when the spontaneous 
infection of head lice with plague (Pediculus humanus 
capitis) was found. With regards to body lice, Swellengrebel 
and Otten82 recovered infected body lice from the clothes of 
a plague victim and from an inhabitant of a plagued house 
in 1914, and in 1935, the capacity of body lice to be infected 
by ingesting plague-contaminated blood was finally 
shown. The first known observation of human con­
tamination by body lice was made among Andean Indians 
who had pharyngeal plague after consumption of 

Figure 3: Schematic view of Y pestis lice-to-human transmission mechanisms
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contaminated lice,83 although it is not known if the bacterial 
load present in infected body lice can cause pharyngeal 
plague that was observed by John D Long after the 
consumption of infected lice.84 The vectoral capacity of lice 
by contamination of their faeces was discovered by Blanc 
and Baltazard,85 but their observations and experiments 
were forgotten and then rediscovered. In 2006, we 
unambiguously showed the plague-vector potential of 
body lice by faecal contamination with viable Y pestis 
bacteria in an experiment with rabbits (figure 3).86

We also found Y pestis in head and body lice during one 
of the last endemic outbreaks in Congo.87,88 Experimental 
studies done both in the 1950s and in 2006 highlighted 
the vectoral capacity of lice for Y pestis in rabbits.85,86,89 
Current models that integrate lice into plague 
transmission models in the Middle Ages are able to 
explain the spread that could not be explained when 
exclusively using the rat–rat flea–human transmission 
model.90 All these studies could also shed light on the 
role played by clothing in the dispersal of Y pestis in an 
epidemic context, as medieval populations were 
infested with lice until the modern period (1492–1850; 
(appendix pp 2–3).68

In the past, authors wrote about the danger posed by 
the clothing worn by people with plague when it came to 
the spread of the plague, especially during the epidemics 
of Marseilles (1720–22)91 and Moscow (1771).69 These 
observations foreshadowed the role of lice and their 
infected faeces that was demonstrated in 1909 during an 
epidemic typhus outbreak by Nobel Prize winner Charles 
Nicolle.79 Further investigations might address whether 
such a mode of transmission might apply to pneumonic 
plague contamination (appendix pp 2–3).

Historical interhuman transmissions of Y pestis
We reviewed historical texts dealing with plague to 
consider the role of lice in the transmission of deadly 
infections, including plague. The first mention of lice as 
putative vectors of plague was found in a treatise written 
by Nicolas Hartsoeker in 1722.92 This text was written at 
the end of the Great Plague of Marseille (1720–22) and 
refers directly to this outbreak.92 Hartsoeker argued 
that plague is not transmitted by air but by the bite of 
microscopic insects, such as lice, which find refuge in 
rags, clothes, and bedding. He described them as follows: 
“I conjecture that the plague is caused only by invisible 
insects which hide themselves willingly in these stuffs 
(tatters, goods or clothes and make their nests inside; 
that these insects multiply extremely in a very short time 
[…] that these insects do not fly, or at least they do not fly 
very far, but that they do rather like lice that we win easily 
when those who are infected; that their bite is in 
proportion to their size, which is at least as dangerous as 
that of vipers; and that their numbers compensate for 
their smallness”.92 The hypothetical role of lice in the 
plague was also mentioned during the Moscow plague 
epidemic in 1771 by Russian scientists on the basis of 

the role that clothing played in the contagion of the 
disease.69,91 The absence of reported cases of animal 
plague during some large outbreaks, such as in Marseille 
(1720–22) or Moscow (1771), revealed that there was 
probably a mostly interhuman transmission, which 
cannot be explained by pneumonic plague because of 
its low transmission rate.69 Although more than 
200 mammal species are susceptible to plague,93 in some 
cases, no major epizootics were observed during plague 
outbreaks.69,91 Furthermore, regarding ancient historical 
texts about second pandemic plague outbreaks, the great 
majority of reported cases were bubonic.47 Bubo (meaning 
swelling of lymph glands in Latin, coming from the 
ancient Greek word boubōn which means groin or 
swelling in the groin) is an adenitis and was common 
during the 15th century (appendix pp 4–5).

During the Plague of Marseille (one of the most 
documented plague episodes [1720–22]), lympha­
denopathies were given different names according to 
their location on the body, thereby lymphadenopathy 
of the glands around the ears was named parotid. 
Lymphadenopathies on inguinal and axillary parts of the 
body were known as buboes, and lymphadenopathies 
located on other parts of the body were known as 
abscesses.94 In the modern semiology of the plague, these 
three terms are grouped under the term buboes. During 
the second pandemic, buboes were primarily reported on 
the inguinal parts of the body or on axillary parts of the 
body, depending on the source;47,91 these locations are 
compatible with human lice bites (appendix pp 6–7). The 
most common location of bubo, the groin, offers a refuge 
for body lice in the underwear (appendix pp 6–7), whereas 
popliteal adenitis might occur from fleabites on the legs. 
At this time, underwear commonly covered the thighs. In 
the modern era, scratching lesions following plague 
infection are usually found in the underwear area. After 
the second pandemic, human body lice became rarer 
thanks to increased hygiene; however, on rare occasions, 
body lice could have been involved in plague transmission 
during the third pandemic, as evidenced by the bubonic 
outbreaks in Glasgow, UK,95 in 1900 and in Congo 
in 2010.88

The future of the plague in the context of louse-
borne diseases
The disappearance of massive Y pestis, B recurrentis, and 
R prowazekii outbreaks in countries with a high level of 
hygiene is most likely evidence of the pronounced 
disappearance of body lice and anthropophilic fleas 
(P irritans), another potential vector for interhuman 
transmission of plague.44 Rats are still common in high-
income countries where body lice are scarce, and plague 
foci persist in low-income countries, such as Congo and 
Madagascar.96,97 However, sporadic cases have been 
reported in the USA and northern Africa.98,99 The 2018 
discovery and sequencing of B recurrentis that was 
recovered from two teeth samples from Oslo, Norway, in 

See Online for appendix
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the 15th century, a time when the plague was endemic,74 
offers evidence of the circulation of both pathogens and 
body lice in the late medieval period. B recurrentis was 
circulating at the same time as R prowazekii, but in 

different locations.67,74 Moreover, B recurrentis is 
transmitted by lice faeces, similar to R prowazekii and 
B quintana.100 A zoonotic agent, such as the murine soft-
tick-transmitted Borrelia duttonii,101 might become an 
interhuman-transmitted pathogen, such as B recurrentis, 
after a louse becomes contaminated after biting a bacte­
raemic patient. Thus, B recurrentis is probably a model 
organism for lice-transmitted pathogens, and the 
circulation of plague has probably more to do with 
human hygiene and the presence of body lice than with 
the transmission of the bacterium as a purely zoonotic 
pathogen. Moreover, the pla gene, which is considered a 
key factor in Y pestis transmission, is unspecific and has 
been found in some strains of Citrobacter koseri isolated 
from rats or in Escherichia coli.102,103 This gene coding for a 
protease can partly explain human pandemics, but the 
success of Y pestis as a zoonotic agent is rather caused by 
the murine toxin, the ymt gene.93

We can construct a scenario for the passage of patho­
gens detected in wild animals, vectored by arthropods 
that occasionally bite humans and are responsible for 
zoonosis (figure 4). Among these pathogens, B quintana 
can remain for years in human organisms and 
populations.104 Similarly, typhus can relapse in the form 
of Brill-Zinsser disease up until 40 years after the initial 
infection with R prowazekii, indicating that humans 
can host the pathogen and transmit it through lice 
throughout their lifetimes.105,106 B recurrentis is also an 
endemic relapsing fever pathogen that persists in 
individual human beings.107 However, because Y pestis is 
not a persisting pathogen in the human organism and 
populations, plague is the louse-transmitted disease that 
manifests itself in successive waves, resulting in multiple 
introductions in Europe because of the absence of a 
human reservoir.61

Lice can considerably amplify the spread of microbes, 
leading to the creation of a hypervirulent clone with 
a reduced genome size and massive interhuman trans­
mission.108 Thus, R prowazekii, which is well identified in 
flying squirrels in the USA, is likely to occasionally 
transmit infections to humans via its arthropods, resulting 
in a situation in which a new typhus cycle can begin. 
Causative agents of recurrent tick-borne borreliosis, such 
as B duttonii or B crocidurae, have a high genetic 
homogeneity. B recurrentis clearly appears as an emerging 
clone of B duttonii with a reduced genome.101 In some 
cases, B duttonii is transmitted to humans,109 and human-
to-human transmission could lead to the selection of a 
hypervirulent clone with a reduced genome size in 
epidemics of pediculosis. We have shown that B quintana 
is also a zoonosis affecting cats.110 The transmission of B 
quintana from cats to humans can be made through fleas, 
and its further spread by lice can occur on a considerable 
scale. However, B quintana has been found in individuals 
who died approximately 2000 years BCE in Europe—at a 
time when cat fleas were probably not the main vector.66,111 

In Poland, B quintana was propagated on a large scale in 

Figure 4: Schematic scenario showing how zoonotic agents might be transmitted among human populations 
via body lice
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could have been identified as the plague. Furthermore, 
modelling of ancient plague epidemics shows that 
transmission by rats and rat fleas is not consistent with 
major outbreaks during the second pandemic. These 
postulations, combined with the rediscovery and 
demonstration of the efficiency of lice as a plague vector, 
provide substantial evidence on which to base a new 
theory around Y pestis transmission in medieval Europe. 
There is sufficient evidence to suggest that lice played a 
major role in plague transmission and spread following 
the same schema as other louse-borne diseases. 
This proposed framework change allows for a better 
understanding of past and future epidemics.
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