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A B S T R A C T

Worldwide, Bartonella species are known to infect a wide range of mammalian and arthropod hosts, including
humans. The current study aimed to investigate the prevalence of Bartonella spp. in synanthropic mammals
captured in peri-urban areas from Central-Western and Southern Brazil and their ectoparasites. For this aim, 160
mammals belonging to four species, and 218 associated arthropods were sampled. DNA was extracted and
subjected to different Bartonella screening assays. Additionally, blood samples from 48 small rodents were
submitted to liquid BAPGM culture followed by qPCR assay and solid culture. Two out of 55 Rattus captured in
Santa Catarina state were PCR-positive for Bartonella when targeting the nuoG, 16S, and ITS loci. Sequences
showed high homology with Bartonella coopersplainsensis. Conversely, all 48 small rodents, 14 capybaras and 43
opossum DNA samples from animals trapped in Mato Grosso do Sul were Bartonella negative in the HRM real
time PCR assays targeting the ITS locus and gltA gene. Additionally, all mammal-associated ectoparasites showed
negativity results based on HRM real time PCR assays. The present study showed, for the first time, the oc-
currence of B. coopersplainsensis in Brazil, shedding some light on the distribution of rats-related Bartonella in
South America. In addition, the majority of rodents and marsupials were negative for Bartonella spp. Since B.
coopersplainsensis reservoirs - Rattus spp. - are widely dispersed around the globe, their zoonotic potential should
be further investigated.

1. Introduction

Distinct biotic and abiotic features, such as habitat fragmentation,
ectoparasites richness, host density and climate conditions, could affect
pathogen transmission dynamics (Greer and Collins, 2007). Further-
more, the absence or the low prevalence of some pathogens in a specific
population can be attributed to different factors, including but not
limited to a small number of tested animals, refractory hosts, or, in

particular cases when a population is established, by invasion/in-
troduction of pathogen-free individuals in a new area (Kosoy and
Bai, 2019).

Bartonella species are vector-borne Gram-negative intracellular fa-
cultative bacteria that infect a wide range of mammalian and ectopar-
asite hosts. These bacteria comprise a group showing distinct host
specificity, distribution, pathogenesis and genetic diversity features
(Arvand et al., 2010; Harms and Dehio, 2012; Mckee et al., 2016;
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Harms et al., 2017; Gutiérrez et al., 2018).
The prevalence of Bartonella in rats (Rattus sp.), a rodent genus

broadly dispersed around the globe, varies widely across different
studies, and sampling sites and even among Rattus species in a same
study (Kosoy et al., 2019). Ecological factors including landscape fea-
tures, structure population, temperature, ectoparasites richness and
sampling zone have been attributed to distinct rates of Bartonella in-
fection in rats (Klangthong et al., 2015; Halliday et al., 2015;
Peterson et al., 2017; Abreu-Yanes et al., 2018).

Unlike Bartonella species and genotypes isolated from Rattus genus
that are usually highly Rattus specific (Buffet et al., 2013; Kosoy et al.,
2019), wild rodents species harbor a great diversity of Bartonella species
(Buffet et al., 2013; Gutiérrez et al., 2015a).

As opposed to rodents, only a few studies have been performed
aiming the molecular detection or isolation of Bartonella in marsupials.
To date, Bartonella was only isolated from Macropus giganteus from
Australia (Fournier et al., 2007). In addition, Bartonella DNA was de-
tected in fleas and ticks collected from marsupials belonging to Bet-
tongia penicillata and Perameles bougainville species from Australia,
(Kaewmongkol et al., 2011). Moreover, cat-related Bartonella spp. have
been molecularly detected in Ctenocephalides felis from an opossum
(Didelphis virginiana) from the USA (Reeves et al., 2005; Nelder et al.,
2009).

In Brazil, limited studies have been carried out addressing the de-
tection and isolation of Bartonella in synanthropic small mammals. For
instance, rat-related Bartonella spp. were isolated from five out of 26
(19%) R. norvegicus sampled in Salvador, Northeast Brazil (Costa et al.,
2014). Additionally, Bartonella DNA was detected in two out of 29 R.
rattus (6.8%) sampled from four Brazilian states (Gonçalves et al.,
2016). Concerning wild rodents, a Bartonella species phylogenetic re-
lated to the Bartonella vinsonii complex (Kosoy et al., 2012) has been
detected in Cricetidae rodents from 12 Brazilian states (Favacho et al.,
2015; Gonçalves et al., 2016; Rozental et al., 2017; de Sousa et al.,
2018).

Only two studies have been performed aiming to detect Bartonella
DNA in marsupials from Brazil. In both studies, none of the 68 mar-
supials’ specimens from four different species were positive for
Bartonella DNA (Fontalvo et al., 2017; de Sousa et al., 2018).

Since rodent-related Bartonella comprise some zoonotic species
coupled with few studies targeting Bartonella in marsupials, we in-
vestigate here the presence of this bacterial group in synanthropic
mammals and associated ectoparasites sampled in localities in Central-
Western and Southern Brazil.

2. Materials and methods

2.1. Sampling sites, mammals capture and biological samples collection

Between September 2016 and August 2018, 160 mammal specimens
belonging to four different species were sampled in distinct sites of
Campo Grande municipality (-20⁰ 42’ 30” S, -54⁰ 61’ 60” W), Mato
Grosso do Sul state (MS), Central-Western Brazil, and Três Barras city
(26° 8’ 42” S, 50° 22’ 53” W), Santa Catarina state (SC), Southern Brazil
(Table 1). In Campo Grande municipality, 48 small rodents (Rattus
rattus [n = 39] and Mus musculus [n =9]) were trapped in urban area
(4 sites) and urban forest fragments (4 sites). Additionally, 14 capy-
baras (Hydrochoerus hydrochaeris), and 43 marsupials (Didelphis albi-
ventris) were trapped in three and six urban forest fragments, respec-
tively, in Campo Grande city. Additionally, 55 black rats (R. rattus)
were captured in thirteen urban sites in Três Barras city, SC (Fig. 1).

All capture procedures were performed as previously described
(Nantes et al., 2019; Gonçalves et al., 2020a). Briefly, the small mam-
mals were captured using Tomahawk (45 × 17,5 × 15 cm) and
Sherman (42 × 11,5 × 14 cm) live traps baited with a mix of bananas,
paçoca, oat flakes and tinned sardines. The small rodents were chemi-
cally immobilized using a combination of ketamine hydrochloride (100

mg/mL) and acepromazine (10 mg/mL) (1:9) intramuscularly. When
the death of anesthetized small rodents did not occur after ex-
sanguination, the euthanasia was performed through intracardiac in-
jection of 19.1% potassium chloride (2 ml/kg). Thereafter blood and/or
spleen fragments were collected under sterile conditions. On the other
hand, marsupials were anesthetized with a chemical association of
Ketamine (20 mg/kg) and Xylazine (2 mg/kg) intramuscularly. Blood
samples were collected from the marsupials’ lateral caudal veins and
placed to DNase and RNase-free anticoagulant ethylenediaminete-
traacetic acid (EDTA)-containing microtubes. Finally, after chemical
immobilization using an anesthetic dart containing TELAZOL® 100
(4mg/kg), blood samples were collected from the capybaras’ femoral
vein into EDTA-buffered vacutainer tubes (Gonçalves et al., 2020a).
Except for the small rodents trapped in Campo Grande, for which blood
samples were kept at -80°C for Bartonella culture, all other samples
(blood or spleen) were kept on ice until arrival to the laboratory and
stored at -20°C until DNA extraction. The following data were recorded
from each animal: the presence of ectoparasites, gender, weight, and
sampling point.

All sampled animals were checked for the presence of ectoparasites.
Once collected, the ectoparasites were placed in microtubes containing
absolute ethanol (Merck®) and maintained at -20°C until morphological
identification and DNA extraction. The morphological identification
was performed using previously described taxonomic keys
(Onofrio et al., 2005; Martins et al., 2010; Linardi et al., 2014;
Anholt et al., 2014; Pereira et al., 2017).

All animal captures were in accordance with the licenses obtained
from the Instituto Chico Mendes de Conservação da Biodiversidade
(license number 56912-2), Imasul (license number 001/2017) and en-
dorsed by the Ethics Committee of FCAV/UNESP and Contestado
Universities under the numbers: 01952/18 and 15/16.

2.2. Bartonella isolation

The 48 blood samples obtained from the small rodents trapped in
Campo Grande municipality were taken to the laboratory for bacterial
culturing. Initially, the blood samples were subjected to a pre-enrich-
ment culture as previously described (Maggi et al., 2005; Duncan et al.,
2007). Briefly, the EDTA-anticoagulated blood samples were thawed at
room temperature and an aliquot of 200 µL was inoculated into filter
cap cell culture flasks (Corning®) containing 2 mL of liquid Barto-
nella alphaproteobacterium growth medium (BAPGM – pH 6.2) sup-
plemented with 10% of defibrinated sheep blood. Sheep blood samples
were confirmed to be Bartonella-negative using a previously described
qPCR assay (André et al., 2016). The flasks were incubated for 7 days at
37°C in 5% CO2 in a water-saturated atmosphere and maintained under
a constant shaking motion. A negative control flask (only liquid culture)
was prepared and incubated simultaneously with all blood samples.
After 7 days of incubation an aliquot of 500 µL was submitted to DNA
extraction using a commercial kit (InstaGene Matrix - BIORAD®) fol-
lowed by a Bartonella screening using the qPCR assay targeting the
nuoG gene describe elsewhere (André et al., 2016). In addition, 300 µL
aliquot was sub-inoculated onto an agar chocolate plate, which was
maintained in incubation as described above during four weeks. The
plates were examined twice a week for the presence of Bartonella-like
colonies. If Bartonella-like colonies were observed, the colonies were
submitted to DNA extraction, qPCR confirmation (André et al., 2016),
conventional PCR targeting the gltA gene (Birtles and Raoult, 1996) and
sequencing.

2.3. DNA extraction and quality

DNA was extracted from ten mg of each small rodent spleen tissue,
and from 200 µL of each blood sample from capybaras and marsupials,
using the DNeasy® Blood & Tissue Kit (Qiagen®, Valencia, California,
USA), according to manufacturer's instructions. Furthermore, the
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collected ectoparasites were submitted to DNA extraction individually
and/or in pools (tick nymphs were pooled up to three individuals,
larvae up to seven individuals) from the same host. The lice were
pooled up to two specimens from the same host, using the commercial
kit mentioned above.

In order to discard the presence of PCR inhibitors, all extracted
mammal DNA samples were used as a template in an internal control
PCR targeting the mammal gapdh gene as previously described
(Birkenheuer et al., 2003). Likewise, all arthropod DNA samples were
submitted to internal control targeting the 16S rRNA as previously
described (Black and Piesman, 1994). Internal control-PCR positive
samples were subsequently submitted to Bartonella screening High

Resolution Melt (HRM) real-time PCR assays targeting the ITS locus and
gltA gene. Additionally, DNA samples from the rodents trapped in SC
were screened using a qPCR assay targeting the nuoG gene.

2.4. Molecular detection of Bartonella DNA in mammals and associated
ectoparasites from Campo Grande city, MS

Initially, DNA samples were screened for Bartonella DNA using an
HRM real-time PCR assay targeting a fragment of approximately 200 bp
of the 16S–23S internal transcribed spacer (ITS) locus, as previously
described (Maggi and Breitschwerdt, 2005; Gutiérrez et al., 2013). To
confirm the results, all DNA samples were submitted to an additional

Table 1
Number and animal species positive to Bartonella.

Site Animal species Sample type N⁰ of sampled
animals

Occurrence of
Bartonella % (N⁰)

Ectoparasite
species

N⁰ of sampled
ectoparasites

Occurrence of
Bartonella % (N⁰)

Mammals Arthropods
Santa Catarina Rodentia

R. rattus DNA from spleen tissues 55 3.6% (2/55) Tunga caecata 2 Not tested
Notoedres muris 1 Not tested
Myocoptes sp. 1 Not tested

Campo Grande Rodentia
R. rattus DNA from spleen tissues

and liquid culture
39 0% (0/39) Amblyomma sp.a 62 0% (0/9)b

Polyplax spinulosa 6 0% (0/2)b

M. musculus DNA from spleen tissues
and liquid culture

9 0% (0/9) - - -

H. hydrochaeris DNA from whole blood 14 0% (0/14) A. dubitatum 42 0% (0/42)
A. sculptum 36 0% (0/33)c

Amblyomma sp.a 2 0% (0/2)
Didelphimorphia
D. albiventris DNA from whole blood 43 0% (0/43) A. dubitatum 70 0% (0/28)b

a Amblyomma sp. refers to larvae sampled – In these specimens only the genus was reported.
b Ectoparasites-DNA pool samples.
c Three out of 36 Amblyomma-DNA samples were negative to the endogenous control (16S rRNA).

Fig. 1. Sampling sites, number and distribution of mammals sampled in Campo Grande, MS and Três Barras, SC, Brazil.
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HRM real-time PCR assay targeting the gltA gene (approx. 350 bp), as
previously described (Sofer et al., 2015). Briefly, the amplification re-
action was performed using the StepOnePlus (Applied Biosystems) real-
time system. The amplification protocol used was as follows: 3 min at
95°C, followed by 40 cycles of 30 s at 95°C, 20 s at 65°C for both targets
(data collection on HRM reporter), and 5 s at 72°C. The HRM stage was
performed at the end of the cycling as follows: 15 s at 95°C, followed by
a temperature increase from 70 to 95°C (data collection set in 0.3%,
HRM reporter). PCR was carried out in 20 μL reaction volumes con-
taining 0.5 μL of 10 mM of each primer, 0.6 μL of 50 μM solution of
Syto9 (Invitrogen®, CA, US), 10 μL of Dream Taq Hot Start PCR Master
Mix (Thermo Fisher Scientific®, San Jose, CA, USA), 6.4 μL ultrapure
PCR water (Thermo Fisher Scientific®, San Jose, CA, USA), and 2 μL of
DNA. DNA of Bartonella krasnovii (Gutiérrez et al., 2020) and ultra-pure
water were used as positive and non-template controls, respectively, in
all real-time PCR assays,

2.5. Molecular detection and characterization of Bartonella DNA in rodents
from Três Barras, SC

The quantification and screening for the Bartonella DNA was per-
formed using a qPCR assay targeting a fragment of 83 bp of the nuoG
gene as described elsewhere (André et al., 2016). Briefly, the qPCR
assay was performed using the 10 µL PCR mixtures contained 5 µL of Go
Taq® Probe qPCR Master Mix, dTTP (Promega) with a final con-
centration of 1,2 µM of each primer (F-Bart [5’-CAATCTTCTTTTGCTT
CACC-3’] and R-Bart [5’- TCAGGGCTTTATGTGAATAC-3’] and hydro-
lysis probe (TexasRed-5’-TTYGTCATTTGAACACG-3’[BHQ2a-Q]-3’) and
1 µL of DNA sample. The amplification conditions were used as follows:
95°C for 3 minutes followed by 40 cycles of 95°C for 10 minutes and
52.8°C for 30 seconds) (André et al., 2016). Serial dilutions were per-
formed with the aim of constructing standard curves with different
concentrations of plasmid DNA (pIDT Smart; Integrated DNA Tech-
nologies) (2.0 × 107 to 2.0 × 10° copies/µl).The number of plasmid
copies was determined in accordance with the formula (x grams per
microliter of DNA/[plasmid size (base pairs) x 660]) x 6.022 × 1023 x
plasmid copies per microliter. Amplification efficiency (E) was calcu-
lated from the slope of the standard curve in each run using the formula
E = 10−1/slope.

The positive DNA samples in the molecular screening for Bartonella
were submitted to additional PCR assays targeting the gltA (Birtles and
Raoult, 1996), rpoB (Renesto et al., 2001), nuoG (Colborn et al., 2010),
groEL (Zeaiter et al., 2002 and Paziewska et al., 2011), 16S rRNA
(Dauga et al., 1996), and ITS (Diniz et al., 2007). Bartonella bovis DNA
(Gonçalves et al., 2020b) and ultra-pure water were used as positive
and non-template controls, respectively, in all PCR assays. Thereafter,
the amplicons obtained were purified using the EXOSAP-IT® (Applied
Biosystems). Purified amplified DNA fragments were submitted to se-
quence confirmation in an automatic sequencer (ABI Prism 310 Genetic
Analyser – Applied Biosystem/ Perkin Elmer) (Sanger et al., 1997).
Finally, consensus sequences were obtained through the analysis of
electropherograms using the Phred-Phrap program with a Phred quality
score (peaks around each base call) established at ≥20 (99% in the
accuracy of the base call) (Ewing et al 1998).

3. Results

3.1. Ectoparasites and DNA extraction quality

Ectoparasites were found in 7.7% (8/103) of small rodents sampled
in Campo Grande, MS and Três Barras, SC. Among them, 62 ticks
(Amblyomma spp.), six lice (Polyplax spinulosa), two mites (one
Notoedres muris and one Myocoptes sp.) and two fleas (Tunga caecata –
including one specimen found in a Bartonella-positive rat - #27) were
sampled. Also, 71.4% (10/14) of trapped capybaras in Campo Grande
were infested with ticks (Amblyomma spp.). Lastly, ticks (Amblyomma

spp.) were observed in 32.5% (14/43) of the sampled opossums. All
ectoparasite species sampled are shown in Table 1.

Except for three tick-DNA samples obtained from capybaras, all
arthropod and mammal DNA samples were positive for 16S rRNA and
gapdh internal control PCR assays, respectively. The tick samples that
were found negative for arthropod-16S rRNA by PCR were excluded
from subsequent analyses.

3.2. Bartonella isolation

None of 48 rodent blood samples submitted to the liquid pre-en-
richment culture were positive by the Bartonella qPCR assay. Likewise,
no Bartonella-like colonies were observed on the agar chocolate plates
during a period of four weeks of incubation.

3.3. Bartonella prevalence and BLASTn results

Two (#22 and #27) out of 55 rats (3.6%) sampled in SC were po-
sitive by the qPCR assay for Bartonella based on the nuoG gene. The #22
and #27 DNA samples showed absolute quantification of 4.7 × 101 and
3.1 × 101 copies/μL, respectively. On the other hand, all mammal and
arthropod specimens trapped in MS were negative by the qPCR assays
for Bartonella targeting the ITS locus and gltA gene. The efficiency mean
of the qPCR assays was E= 98.1% ([ranging from 91.4% to 103.9%];
slope = -3.371; r2 = 0.997).

The two nuoG-qPCR positive samples were confirmed positive by
conventional PCR assays targeting the nuoG and 16S rRNA genes and
ITS locus. While the #22 and #27 DNA samples were positive in all
above referred PCR assays, the #27 DNA sample showed weak band
intensity in nuoG and 16S assays, precluding its sequencing. Both ITS
sequences shared 99.6% identity to Bartonella coopersplainsensis (ac-
cession number EU111770) isolated from an Australian Rattus leucopus.
The only 16S sequence obtained (#22) in the present study shared
100% identity to both Bartonella sp. (accession number AY993935)
detected in Rattus tanezumi from China and B. coopersplainsensis (ac-
cession number NR_1116177) isolated from R. leucopus from Australia.
Also, the obtained nuoG sequence (#22) was identical (100% identity)
to Bartonella sp. (JX131666) detected from R. tanezumi from South
Africa. The nuoG, ITS and 16S sequences showed query coverages
ranging from 81% to 100%. The sequences were deposited in GenBank
database under accession numbers: nuoG: MT302378; ITS: MT271770-
MT271771 and 16S: MT267730.

4. Discussion

In the current study, only two out of 55 rats trapped in SC were
positive for Bartonella DNA. However, all DNA samples obtained from
mammals’ blood samples or ectoparasites sampled in MS were negative
on the screening real-time PCR for Bartonella DNA targeting two dif-
ferent genomic regions. Considering that all DNA samples from MS
were positive for the internal control (gapdh), confirming the presence
of amplifiable DNA, the absence of Bartonella DNA suggests that all
animals screened were not infected with Bartonella or that these ani-
mals presented an extremely low number of circulating Bartonella or-
ganisms, at least below the limit of detection of the HRM real-time PCR
assays performed, which was previously estimated to be < 1 CFU per µl
for the ITS locus (Gutiérrez et al., 2015b). In addition, we carried out
the liquid BAPGM culture followed by qPCR approach aiming to im-
prove the sensitivity of Bartonella diagnosis in the small rodent blood
samples from MS. This approach has greatly facilitated the Bartonella
detection from the blood samples of several animal species
(Breitschwerdt, 2014). Nonetheless, none rodent blood sample sub-
jected to BAPGM approach was positive, supporting the hypothesis that
these animals were Bartonella-free.

The rat-associated Bartonella prevalence rates vary widely among
the different studies and sampling zones within the same study
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(Kosoy and Bai, 2019). Several biotic and abiotic features have been
attributed to prevalence variations. Peterson et al. (2017) reported that
the Bartonella prevalence in rats ranged from 0 to 97% among the
different sampling sites. In addition to environmental features, the
authors reported that co-occurrence of rat species (R. rattus and R.
norvegicus), flea infestation, and age class were significant predictors for
Bartonella prevalence (Peterson et al., 2017). Likewise, during a study
performed in Asembo and Kibera, Kenya, the Bartonella prevalence in
Rattus varied from 0 to 60% according to the trapping sites
(Halliday et al.,2015). Different from Asembo sampling site that is more
rural, the Kibera study site is a neighborhood within Nairobi - the
Kenyan capital - few miles from the Nairobi center, thus is likely to have
a higher international connectivity with a higher rodent movement
through sea trade. Thereby, the higher prevalence observed at the Ki-
bera might be explained by the repeated introduction of Rattus-asso-
ciated Bartonella species to this site.

In the above scenario, Kosoy and Bay (2019) analyzing the pre-
valence of Bartonella in rats around the world, highlighted that Barto-
nella infection rates in rat populations are very high. However, the
authors noticed that rats in some cities were not infected with Barto-
nella. One of the explanations raised by the authors is that the absence
of Bartonella in some rat populations could be attributed to a kind of
"island syndrome", in which at some point, certain parasites are absent
mainly when a new rat population is formed by the introduction of a
small number of individuals. Therefore, this could explain the absence
or low prevalence of Bartonella in rats in some studies outside of Asia
(Kosoy and Bay, 2019), as well as in our study.

Curiously, Ellis et al. (1999) reported that rats from US coastal cities
(e.g. Baltimore, Miami and Los Angeles) were Bartonella positive, while
rats sampled in non-coastal cities (Reno and Spencer) were Bartonella-
free. Distinct from the first report of rat-associated Bartonella in Brazil,
in which 19% R. norvegicus (n = 26) trapped in Salvador, a coastal city,
were positive (Costa et al., 2014), the rats sampled in the present study
in non-coastal cities of Campo Grande, MS, and Três Barras, SC, far
approximately 1.000 Km and 170 Km, respectively, from the Brazilian
coast, showed to be Bartonella-free and/or a low prevalence (3.6%) for
this group of bacteria. Although a low number of rats have been ana-
lyzed (n = 39 in MS and n = 55 in SC), the molecular absence and the
low Bartonella-DNA prevalence in rats could be attributed to possible
isolation of the rat populations explored in this study.

Considering that rats were introduced to Brazilian territories during
the European colonization (only about 500 years ago) (Hingston et al.,
2016), we can speculate that these rat populations were established by
Bartonella-free individuals or by only a few individuals harboring Bar-
tonella. Likewise, the continuous arrival of new rats through seaports, as
probably has happened in Salvador city, may have played a crucial role
in the prevalence of rat-related Bartonella in coastal cities. Finally, the
low prevalence of rat fleas, that are considered key players in the
Bartonella cycle (Gutiérrez et al., 2015a) during the ectoparasites
survey, could have influenced the Bartonella prevalence found. How-
ever, new studies sampling a higher number of rats in different sites,
coastal and non-coastal regions, are much necessary to solve this en-
igma.

In Brazil, the overall Bartonella prevalence in wild rodents varies
from 0% to 42.9% (Favacho et al., 2015; Gonçalves et al., 2016;
Rozental et al., 2017; Fontalvo et al., 2017; de Sousa et al., 2018). Si-
milar to Fontalvo et al. (2017) that reported negative results for Bar-
tonella DNA in all small wild rodents (n = 38) trapped in Pernambuco
state, Northeastern Brazil, all capybaras (n =14) analyzed in the cur-
rent study showed negative results in the HRM real-time PCR assays.
Despite the fact that several flea species have been reported in small
rodents from Brazil (Carvalho et al., 2001), fleas were not observed on
rodents at the time of sampling nor in the present study neither in the
study performed by Fontalvo et al. (2017). Conversely, de Sousa
et al. (2018) reported a Bartonella prevalence of 31.8% (35/110) among
wild rodents trapped in the central region of Pantanal, municipality of

Corumbá, MS – far approximately 350 km from our sampling sites in
Campo Grande municipality, MS. Also, 75 fleas (Polygenis bohlsi bohlsi)
were collected from 16 (14.5%) rodents. Finally, the authors reported
Bartonella DNA in three (7.8%) flea pools, emphasizing the role of fleas
in the rodent-associated Bartonella prevalence.

Capybaras have a broad distribution in South America. Usually, this
rodent species is infested by ticks (Szabó et al., 2013), and only a few
records of fleas in this rodent species were reported (Linardi and de
Avelar, 2014). Although the rodent-associated Bartonella birtlesii
transmission under experimental condition by Ixodes ricinus tick has
been demonstrated (Reis et al., 2011), the role of ticks in rodent-related
Bartonella transmission remains unclear (Harrison et al., 2012).
Therefore, the absence of fleas may have influenced the Bartonella
prevalence found in capybaras. Considering that a limited number of
capybaras were screened, these results should be interpreted with
caution. Thereby, future studies are needed in order to shed light on the
role of capybaras as hosts for Bartonella in South America.

Except for the findings from Australia (Fournier et al., 2007;
Kaewmongkol et al., 2011), no study has reported the detection of
Bartonella DNA in marsupials from America. Marsupials have a wide
distribution in the American continents, but, only two studies reported
the occurrence of Bartonella in ectoparasites from marsupials
(Reeves et al., 2005; Nelder et al., 2009). Nonetheless, it is necessary to
emphasize that the Bartonella-positive ectoparasites found in D. vir-
giniana were the cat flea, C. felis - a common finding in the USA
(Abramowicz et al., 2012; Blanton et al., 2016) - in which only cat-
associated Bartonella DNA (B. clarridgeiae and B. henselae) were de-
tected. The fact that the marsupials were not screened in both above
mentioned studies, the role of these mammals in the Bartonella epide-
miological cycles remains vague.

Only two studies have previously investigated the occurrence of
Bartonella in marsupials from Brazil. None of the 68 marsupials sampled
in central-western and northeastern Brazil were positive for Bartonella
(Fontalvo et al., 2017; de Sousa et al, 2018), as well as reported in the
present study. Additionally, all ectoparasites including Polygenis bohlsi
bohlsi fleas (n = 5) collected from Monodelphys domestica and Thylamus
macrurus (de Sousa et al., 2018) and C. felis fleas (n = 3) collected from
D. albiventris (Fontalvo et al. 2017) showed to be negative for Bartonella
DNA. These findings raise interesting questions about the role of the
American marsupials in the Bartonella life cycle. Are marsupials re-
fractory hosts for Bartonella infection? Could the marsupial's immune
system promote the clearance of Bartonella infection?

In the current study, although with a low prevalence, we showed,
for the first time, the occurrence of B. coopersplainsensis in rats trapped
in Brazil. This Bartonella species has not been reported in humans yet.
However, since its description (Gundi et al., 2009), B. coopersplainsensis
has been detected from Rattus collected in Southeastern Asia
(Saisongkorh et al., 2009; Jiyipong et al., 2012; Tay et al., 2014), New
Zealand (Helan et al., 2018), Spain and Italy (Obiegala et al., 2019),
and from wild rodents (Apodemus agrarius) from China (Li et al., 2015)
and Lithuania (Mardosaitè-Busaitienè et al., 2019). The absence of
positive results in conventional PCR assays based on gltA and rpoB genes
might have been associated to the low number of Bartonella DNA copies
present in the sampled rodent samples. Although the three amplified
regions (16S rRNA, nuoG and ITS) shows a lower discriminatory power
when compared with gltA and rpoB genes (La Scola et al., 2003), they
provided sufficient discriminatory information for the identification of
B. coopersplainsensis infecting R. rattus in the current study. Ad-
ditionally, we emphasized that most screened DNA samples were Bar-
tonella-free. Therefore, ecological and biological factors (e.g. rodents’
geographic isolation and absence of fleas) may also have influenced the
prevalence observed. Finally, since B. coopersplainsensis reservoirs -
Rattus spp. - are widely dispersed around the world, their zoonotic
potential should be further investigated.
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