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Mammals are a prominent and conspicuous group of ani-
mals and are a main component of the Earth’s currently 
living megafauna. They occupy diverse regions, from 

polar to tropical, and diverse habitats from terrestrial to marine1. 
Despite a much earlier origin, much of the diversification of mam-
mals occurred after the Cretaceous–Palaeogene (K–Pg) boundary, 
following the extinction of the dinosaurs2–7. Like most vertebrate 
groups, mammals also host a diversity of parasite lineages that 
radiated along with them over their evolutionary history8,9. 
Understanding patterns of parasite diversification can shed light on 
host diversification10–15, as well as provide insights into the processes 
of coevolution more broadly15–17.

Lice are one familiar group of parasites that are widespread 
across the diversity of mammals, including humans and birds9,18,19. 
These wingless ectoparasitic insects spend their entire lifecycle on 
the body of the host15. Five major groups of lice are recognized20 and 
all of these have at least some representation on mammals. These 
include species with chewing mouthparts (Amblycera, Ischnocera, 
Trichodectera, Rhynchophthirina) and sucking mouthparts 
(Anoplura). Most, but not all, major mammalian orders are host to 
one or more of these major groups of lice. Curiously, the presence 
of each of these groups is somewhat patchy across the diversity of 
mammals. For example, rodents broadly host three of these major 
groups (Amblycera, Trichodectera, Anoplura). In contrast, marsu-
pials host only one group of chewing lice (Amblycera), while the 
great apes (including humans) host only sucking lice (Anoplura). 
While the evolutionary history of the blood-feeding sucking lice of 
great apes is well understood21,22, the relationships among mammal 
lice more broadly are less clear22.

Recent higher-level phylogenetic studies of lice4,20 have revealed 
that sucking lice (Anoplura) are clustered together with two groups 
of mammalian chewing lice (Trichodectera and Rhynchophthirina). 
This arrangement had not previously been suggested and identifies 
an expanded group of lice comprising over 1,000 species18 exclusive 

to mammals that also radiated after the K–Pg boundary9. Curiously, 
each of the major groups within this newly identified lineage occurs 
on at least one member of Afrotheria (elephants, elephant shrews 
and hyraxes, among others), a group of mammals of primarily 
African distribution, which together with Xenarthra (anteaters, 
armadillos and sloths), is sister to all other placental mammals6,7. 
For example, elephants host only members of Rhynchophthirina 
(of which there are only three species18). Elephant shrews host 
only members of Anoplura, and hyraxes host members of both 
Trichodectera and Anoplura18,19. These patterns of host distribution 
raise the question: what was the original host group of placental 
mammal lice? Furthermore, are there broad patterns of codiversi-
fication between mammals and their lice at deep taxonomic scales, 
or is the patchy distribution of lice across mammals the result of 
parasite extinction and/or host-switching?

To address these questions, we expand previous taxonomic 
sampling9 of mammalian louse genomes to include additional key 
lineages hosted by members of Afrotheria (including lice from ele-
phant shrews and hyraxes) and additional sampling across the major 
mammalian louse clade. We leverage these genomic sequences to 
construct a phylogenomic dataset for lice more broadly, but with 
focus on the major mammal louse clade. The evolutionary history 
of these mammal lice is compared with that for their mammal hosts 
to identify the ancestral host lineage and to understand the dynam-
ics of diversification of this major group of parasites.

Mammal louse cophylogenetics
The phylogeny of parasitic lice (Fig. 1) based on a target set of 2,395 
single-copy nuclear genes (3,921,975 aligned base pairs; bp) recov-
ered all major groups as monophyletic (Amblycera, Ischnocera, 
Trichodectera, Anoplura; note Rhynchophtirina was sampled by 
only one species, so its monophyly could not be tested). Importantly 
for this study, a large mammal louse group (Trichodectera, 
Rhychophthirina, Anoplura) had a single common ancestor, and 
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Fig. 1 | Phylogenetic tree from maximum likelihood analysis of the concatenated alignment of 3,921,975"bp from 2,395 single-copy target nuclear gene 
orthologues. The number associated with branches to the left of the slash is ultrafast bootstrap support. The number to the right of the slash is local 
posterior probability from ASTRAL coalescent gene tree/species tree analysis. Dashes indicate nodes not present in the coalescent tree. Pie charts on nodes 
represent the relative likelihoods from maximum likelihood reconstruction of bird (red) or mammal (blue) host under the all-rates-different model (root age: 
92 Ma). Major louse groups are indicated with coloured shading on the right (Rh., Rhynchophthirina) and louse images on the left. Bird and mammal images 
are representative hosts for louse parasites in the tree. Grey box and dashed lines indicate key louse genera from Afrotheria hosts. Credit: louse images on 
the left, ©Jacqueline Mahannah; bird and mammal images on the right, ©Lynx Edicions. Scale bar indicates number of substitutions per site.
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this group received maximal support by both concatenated (100% 
bootstrap) and coalescent (1.0 local posterior probability) analyses. 
In general, the trees from concatenated and coalescent analyses 
were highly similar, with only seven branches not present in both 
trees (Fig. 1).

Within the mammal louse clade, lice from Afrotherian hosts 
(elephant, hyrax, elephant shrew) were among the earliest diverg-
ing branches. Specifically, the elephant louse (Rhynchophthirina: 
Haematomyzus) was sister to all of Trichodectera, and within 
Trichodectera, the hyrax louse (Procavicola) was the earliest 
diverging lineage. Within sucking lice (Anoplura), the elephant 
shrew louse (Neolinognathus) was a member of the earliest diverg-
ing lineage (concatenated tree) or sister to all other Anoplura  
(coalescent tree).

The early diverging phylogenetic position of these Afrotherian 
lice resulted in the common ancestor of this mammalian group 
being reconstructed as the ancestral host for the entire mammal 
louse clade (Fig. 2). This reconstruction was stable across both louse 
trees (concatenated and coalescent) and across all maximum par-
simony reconciliations (MPRs) and evaluated cost schemes in the 
eMPRess analysis. Furthermore, the divergence between elephant 
lice (Haematomyzus) and hyrax lice (Procavicola) is also a cospe-
ciation event under all reconstructions, indicating that the com-
mon ancestor of elephants and hyraxes also inherited its lice from 
the ancestor of all Afrotheria. Subsequent radiation of lice across 
mammals was a result of host-switching from Afrotheria to other 
mammal lineages. Overall, there were either 17 (concatenated 
tree) or 15 (coalescent tree) reconstructed cospeciation events, and 

this was many more than expected by chance (P < 0.01), although 
host-switching of lice among major mammal lineages was also com-
mon (15 or 17 host-switching events; Extended Data Figs. 1 and 
2). Distance-based cophylogenetic methods also recovered statisti-
cally significant congruence (P < 0.001) between host and parasite 
trees, suggesting an extensive history of codivergence. In addition, 
17 host–parasite links had mean squared residual values (Extended 
Data Fig. 3) greater than or equal to the overall median squared 
residual value, and these are interpreted as links with topological 
conflict23. A total of 14 of 17 (82%) of these associations were directly 
involved in host-switching events as inferred by eMPRess, either as 
donor or recipient lineages, including the two lineages involved in 
switches out of Afrotheria (elephant shrew louse: Neolinognathus 
and rock hyrax louse: Procavicola). These results indicated general 
concordance between event-based24 and distance-based methods23 
regarding the occurrence of host-switching events.

Cospeciation at the node of earliest divergence in mammal lice 
implies the divergence in the ancestral host, that is, the earliest 
divergence within Afrotheria, also occurred at that time. The con-
fidence intervals on the dates we estimated for this earliest diver-
gence in mammal lice broadly overlap with published estimates 
of the earliest divergence within Afrotheria (Supplementary Table 
1, except for the analysis with the youngest root age constraint, 
which would imply slightly delayed cospeciation). For maximum 
likelihood estimation of the ancestral host (bird or mammal) over 
these dated trees, the all-rates-different model was favoured by the 
Akaike information criterion (AIC; 92 Myr ago (Ma): equal rates 
AIC = 38.18, all-rates-different AIC = 37.11; 131 Ma: equal rates 
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Fig. 2 | Cophylogenetic comparison of dated mammal (left) and mammal louse (right) phylogenies. Mammal tree and dates from a comprehensive tree 
of mammals5. Louse tree is dated using a combination of fossil and codivergence calibrations and the residual least squares method (Methods). Blue lines 
link lice with their respective mammal hosts. Coloured circles link louse and mammal nodes that are shared cospeciation events between mammal and 
louse trees. Geological timescale is indicated by coloured shading (Quartenary 0–2.6 Ma, Neogene 2.6–23 Ma, Palaeogene 23–66 Ma and Cretaceous 
66–145 Ma) to the same scale for both mammal and louse trees. Dashed lines with arrows indicate key host-switching events mentioned in the main text. 
Asterisk indicates the mammal lineage (Afrotheria) on which mammal lice were inferred to have originated. Elephant silhouette extracted from Phylopic 
(www.phylopic.org).
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AIC = 38.0, all-rates-different AIC = 37.0; 171 Ma: equal rates 
AIC = 37.97, all-rates-different AIC = 36.98). Under this model, an 
avian host was reconstructed at the ancestor for all lice with 100% 
relative likelihood (Fig. 1) over all dated trees. Other louse ancestors 
uniting parasite lineages with descendent lineages of bird versus 
mammal hosts were also reconstructed as an avian host ancestor 
with 100% relative likelihood. This result indicates that there were 
four transitions (that is, host switches) from avian to mammalian 
hosts over the evolutionary history of lice, including the ancestor of 
the large mammal louse clade originating on Afrotheria.

Discussion
Cophylogenetic analysis of a major group of mammalian parasites 
indicated that early divergences in these parasitic lice occurred on 
ancestors of a mammalian group with primarily African distribu-
tion: Afrotheria (elephants, hyraxes, elephant shrews and relatives). 
This result sheds new light on the origins and diversification of 
mammal lice. After initial codivergence with ancestral Afrotheria, 
these lice went on to colonize, through host-switching, other lin-
eages of placental mammals and later codiversified with them  
(Fig. 2).

For example, the ancestor of lice from elephant shrews colonized 
either the common ancestor of rodents and primates (concatenated 
louse tree) or the ancestor of a lineage within primates (galagos and 
Madagascan lemurs, coalescent louse tree). This colonization event, 
in either case, was followed by additional diversification of lice 
within primates by both cospeciation and further host-switching of 
lice among primates, leading to the presence of two genera (Pediculus 
and Pthirus) of lice on humans. Interestingly, Madagascan lemurs, 
or their direct ancestors, seem to be involved in acquiring lice from 
ancestral elephant shrews. Another louse genus (Trichophilopterus) 
that occurs on Madagascan lemurs is derived from within avian 
feather lice (Ischnocera; Fig. 1), again suggesting a host switch to 
these primates, in this case from birds to mammals. It seems that 
the ancestor of Madagascan lemurs was possibly free of parasitic lice 
and represented an open niche, facilitating host-switching25.

The genera of sucking lice (Polyplax, Neohaematopinus, 
Enderleinellus, Linognathoides and Hoplopleura) of rodents fall 
within a single group of Anoplura. In many cases, single species of 
rodents can be infested with multiple genera of sucking lice, sug-
gesting the diversity of these lice on rodents arose by speciation of 
parasites within this host lineage (that is, duplication). The pres-
ence of sucking lice within the largely rodent louse clade on hyraxes 
and wildebeest appears to have been the result of host-switching 
of lice from rodents to these other mammal lineages in Africa. 
Some New World rodent lineages, such as porcupines and pocket 
gophers, are not host to any sucking lice, and these rodents acquired 
their lice (Trichodectera) by host-switching from carnivorous 
mammals (Carnivora). Although initially somewhat unexpected, 
host-switching of lice from predators to prey has also been shown 
for the feather lice of avian raptors, which also appear to have 
switched to their prey26. It may be that if initial capture followed by 
escape of prey occurs frequently, host-switching of lice from preda-
tors to prey could be facilitated.

Even though there are prominent cases of host-switching of lice 
between major lineages of placental mammals, a large proportion 
(47–53%) of parasite divergence events were found to be the result 
of cospeciation. This is also the case in the percentage of mammalian 
host branching points, with 50–57% of nodes in the host tree associ-
ated with a cospeciation event by their parasitic lice. The dominance 
of cospeciation of the lice of mammals stands in contrast to a com-
parable study of avian feather lice (Ischnocera)27, in which across 
a similarly broad diversity of lice, only 17% of avian hosts nodes 
were associated with a cospeciation event by their parasitic feather 
lice. Perhaps the reduced mobility of mammals compared with birds 
makes host-switching more difficult, and this has been suggested 

as an ecological factor facilitating the strong signatures of codiver-
gence, and lack of host-switching, observed in gopher lice28,29.

In summary, the mammalian lineage Afrotheria played a major 
role as an ancestral host for a major lineage of mammalian para-
sites. Much of the subsequent diversification of this group of lice 
can be attributed to an ‘out-of-Afrotheria’ scenario, in which lice 
from ancestral Afrotheria colonized other placental mammals. 
This raises the question of how the ancestor of Afrotheria acquired 
their lice in the first place. Through maximum likelihood character 
state reconstruction, we inferred that the ancestors of Afrotheria 
acquired their lice from an avian host, leading to the diversification 
of this major group of mammalian parasites.

Methods
Taxon sampling. We sampled 33 louse species (across 27 genera) from across 
the major mammal louse clades (Trichodectera, Rhynchophthirina, Anoplura) 
for genome sequencing (Supplementary Table 2). These included 14 species 
newly sequenced for this study. Most notably, our new sequences included one 
species of Anoplura from an elephant shrew and two species (representing both 
Anoplura and Trichodectera) from a hyrax, which expanded our sampling of these 
parasites from Afrotheria beyond the elephant louse (Rhynchophthirina) already 
sequenced. We also included broad outgroup sampling of 29 species (across 29 
genera) of Ischnocera and 21 species (across 20 genera) of Amblycera, including 
representatives of all major louse lineages with bird and mammals hosts within 
each of these outgroups.

DNA extraction and genome sequencing. For newly sequenced samples, total 
genomic DNA extractions were prepared from a single specimen that had been 
stored in 95% ethanol at −80 °C, which was first photographed as a voucher. 
Prior to extraction, the sample was ground using a plastic pestle in a 1.5 ml tube. 
Extractions followed manufacturers’ protocols for the QIAamp DNA Micro Kit 
(Qiagen), with initial incubation in ATL buffer with proteinase K at 55 °C for 
48 hours. Final elution was in 50 μl buffer AE, and DNA was quantified with the 
high-sensitivity kit using a Qubit 2.0 Fluorometer (Invitrogen).

From total genomic DNA extractions, the Hyper library kit (Kapa Biosystems) 
was used to prepare Illumina libraries. An Illumina NovaSeq 6000 S4 lane 
multiplexed with 48 libraries tagged with unique dual-end adaptors was used 
to sequence 150 bp paired-end reads to achieve at least 30–60× coverage of the 
nuclear genome. To generate fastq files for each library, files were demultiplexed 
and adaptors trimmed using bcl2fastq v.2.20, and raw reads were deposited in the 
National Center for Biotechnology Information Sequence Read Archive (NCBI 
SRA; Supplementary Table 2). Raw reads from previously sequenced samples were 
downloaded from the NCBI SRA (Supplementary Table 2 for details).

Gene assembly and phylogenomics. We used aTRAM v.2.030 to assemble a target 
set of 2,395 single-copy orthologue protein coding genes, using reference amino 
acid sequences from the human louse Pediculus humanus. These amino acid 
sequences were used in tblastn searches of the genomic raw read libraries to locally 
assemble each orthologue gene. Specific assembly, alignment and phylogenomic 
analysis processing steps, parameters and commands followed previous studies31. 
After assembly, exon sequences were identified and stitched together to remove 
intron sequences using an Exonerate-based32 stitching pipeline (atram_stitcher30).

Nucleotide sequences were translated to amino acids and aligned using 
MAFFT v.7.47133. After back-translation to nucleotide sequences, individual gene 
alignments were trimmed using trimAL v.1.4.rev2234 with a 40% gap threshold. 
Any gene present for less than four taxa was discarded. Gene alignments were 
then concatenated into a supermatrix and analysed under maximum likelihood 
using IQ-TREE 2 v.2.1.235 in a partitioned analysis that included model selection 
for each partition. All trees were rooted on Amblycera based on prior studies9. 
Support was estimated using ultrafast bootstrapping. To account for the potential 
that incomplete lineage sorting could result in gene trees not reflecting the species 
tree36, a coalescent analysis using ASTRAL-III37 was conducted on individual gene 
trees estimated by maximum likelihood in IQ-TREE 2. As a measure of branch 
support, local posterior probability for each branch was also computed using 
ASTRAL-III.

Cophylogenetics and molecular dating analyses. To estimate the ancestral host 
of the mammal louse clade (Trichodectera, Rhynchophthirina, Anoplura), we 
used eMPRess24 to compare the phylogenies (both concatenated and coalescent) 
estimated for this group against a phylogeny for their mammal hosts. For the 
mammal phylogeny, we used the most comprehensive species-level phylogeny to 
date5, because this tree included all the mammal host species corresponding to our 
louse parasite sampling. The major branches in this mammal host tree are generally 
consistent across a number of recent studies2–4,6,7,38 and reflect the best current 
knowledge of the mammal phylogeny. For the cophylogenetic analysis, we used a 
cost scheme of 1 for duplication and sorting events, and 2 for host-switching. We 
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also explored the six adjacent cost scheme zones to this scheme in eMPRess, which 
included host-switching costs ranging from zero to three times the cost of sorting 
events, and duplication costs ranging from zero to ten times the cost of sorting 
events. We followed previously outlined procedures for summarizing the MPRs31. 
The parasite tree was randomized 100 times compared with the host tree to test 
whether the number of cospeciation events was more than expected by chance. In 
addition, we ran two distance-based methods, PACo23 (default parameters, 100,000 
permutations) and ParaFit39 (default parameters), to evaluate if there was an overall 
signature of cospeciation in our dataset.

For each median MPR cluster reconstruction, we ascertained the reconstructed 
ancestral host of the mammal clade of lice. To evaluate whether the age of this host 
ancestor was compatible between host (mammal) and parasite (louse) trees, we 
performed a dating analysis on the concatenated louse tree. For this method, we 
used the residual least squares method in IQ-TREE and the same calibration points 
for internal nodes used by previous molecular dating analyses of lice (split between 
human and chimp lice 5–7 Ma, split between the lice from Old World primates and 
Great Apes 20–25 Ma, minimum age for Menoponidae of 44 Ma based on fossil2). 
We performed this dating analysis using three possible root ages (that is, split 
between Amblycera and other parasitic lice) that span estimates from prior studies: 
92 Ma9, 131 Ma40 and 171 Ma41.

For lice more broadly, we also reconstructed whether the ancestral host was 
a bird or mammal using maximum likelihood. Each louse was coded as being 
hosted by a bird or mammal, and the time-calibrated trees resulting from the three 
possible root ages were used for the reconstruction. For this analysis, we used the 
ace function (equal rates and all-rates-different models) in the R package APE 
v.5.542. We evaluated whether the equal rates model could be rejected in favour of 
the all-rates-different model using AIC.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper 
and/or the Supplementary Information. Phylogenomic data generated in this study 
are available at figshare (https://doi.org/10.6084/m9.figshare.18737423).
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Extended Data Fig. 1 | Summary of cophylogenetic reconstruction of optimal MPRs from eMPRess comparison (cost scheme duplication: 1, sorting: 1, 
and host-switching: 2) of the louse (concatenated) tree with the mammal host tree. Arrows indicate direction of host-switches. Numbers associated 
with events are the percentage of MPRs with that event.
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Extended Data Fig. 2 | Summary of cophylogenetic reconstruction of optimal MPRs from eMPRess comparison (cost scheme duplication: 1, sorting: 1, 
and host-switching: 2) of the louse (coalescent) tree with the mammal host tree. Arrows indicate direction of host-switches. Numbers associated with 
events are the percentage of MPRs with that event.
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Extended Data Fig. 3 | Jack-knifed squared residuals (bars) and upper 95% confidence interval (error bars) associated with each mammal-louse 
association (link). Dashed line indicates the overall median squared residual value (n!=!33 biologically independent samples).
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