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Simple Summary: We analyzed the ectoparasite community of a monomorphic and non-social bird,
the burrowing owl, Athene cunicularia, breeding in rural and urban habitats. Such community
was composed by two lice, one mite and one flea species. Rural individuals had more fleas and
less mites than urban ones. Adult birds harbored less ectoparasites than young ones and females
harbored more lice than males. The presence of lice was positively related to the presence of fleas.
On the contrary, the presence of mites was negatively related to the presence of fleas and lice. The
study of parasite communities in urban and rural populations of the same species can shed light
on how urban stressor factors impact the physiology of wildlife inhabiting cities and, therefore, the
host-parasite relationships.

Abstract: Urbanization creates new ecological conditions that can affect biodiversity at all levels,
including the diversity and prevalence of parasites of species that may occupy these environments.
However, few studies have compared bird–ectoparasite interactions between urban and rural indi-
viduals. Here, we analyze the ectoparasite community and co-infection patterns of urban and rural
burrowing owls, Athene cunicularia, to assess the influence of host traits (i.e., sex, age, and weight),
and environmental factors (i.e., number of conspecifics per nest, habitat type and aridity) on its
composition. Ectoparasites of burrowing owls included two lice, one flea, and one mite. The overall
prevalence for mites, lice and fleas was 1.75%, 8.76% and 3.50%, respectively. A clear pattern of
co-infection was detected between mites and fleas and, to less extent, between mites and lice. Adult
owls harbored fewer ectoparasites than nestlings, and adult females harbored more lice than males.
Our results also show that mite and flea numbers were higher when more conspecifics cohabited
the same burrow, while lice showed the opposite pattern. Rural individuals showed higher flea
parasitism and lower mite parasitism than urban birds. Moreover, mite numbers were negatively
correlated with aridity and host weight. Although the ectoparasitic load of burrowing owls appears
to be influenced by individual age, sex, number of conspecifics per nest, and habitat characteristics,
the pattern of co-infection found among ectoparasites could also be mediated by unexplored factors
such as host immune response, which deserves further research.

Keywords: Athene cunicularia; co-infection; ectoparasites; fleas; lice; mites; urban ecology
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1. Introduction

Emerging infectious diseases have motivated substantial advances in understanding
the ecology of parasite communities [1,2]. Several studies show that parasite-host interac-
tions can vary among species, landscapes, and habitats [3,4], depending on the extent and
complexity of their distributions, and host features: e.g., body size, age, behavior [5], and
environmental characteristics: e.g., conspecific density, climate [6–8]. Moreover, seasonal
movements and dispersal of host species across the landscape may also contribute to
changing their parasite communities, also increasing the chances of transmission to other
species [9]. Because host and parasite diversities are strongly connected, changes in the
landscape are also likely to modify parasite diversity, with implications for wildlife but
also human health [10,11].

Individuals may harbor parasites belonging to different zoological taxa (“island ecosys-
tems” [2,12]). Although direct interactions among parasites are important in determining
which combination of parasites will be present in an individual, e.g., mechanical facilita-
tion [13], interference competition [14], indirect interactions (i.e., those mediated by host
defenses [4]) are critical in explaining intracommunity variability. Associations between
parasites may be similarly influenced by host traits such as behavior, ecology, exposure
history, and pathologies [15], which may influence the transmission [16,17], distribution
patterns [18], and the load patterns of parasites [19]. Moreover, morbidity induced by one
parasite can affect host exposure to others, even if they are antagonistic [20], and mortality
induced by one parasite could also reduce available hosts for other parasite species [21].

Urbanization constitutes a primary driver of habitat loss and fragmentation, affecting
the spatial distribution of species and inducing deep ecological changes that affect many
components of biodiversity [22–24]. Although animal communities are often simplified
and homogenized in cities [25], these novel environments can also host a large number of
species, including endangered ones [26–28], which may flourish and reach higher densities
than in natural areas [27,29,30]. However, changes in conspecific density, resource avail-
ability and predation pressure commonly found in urban ecosystems [27,31–33] can have
both positive and negative effects on the breeding performance and survival prospects of
individuals [34–36]. Urbanization may also affect the parasite-host interactions by provid-
ing some effective resources to deal with ectoparasites: e.g., using cigarette butts within
the nest material reduce the ectoparasite load in birds [37], or by increasing stress [38]:
e.g., heavy metals [39], noise [40], human disturbance [41], but see [35], which can affect
the body condition and health status of the individuals [42]. Thus, urban individuals can
differ in their propensity to be parasitized compared to their rural counterparts.

Although our knowledge of changes in ecological and evolutionary processes as-
sociated with urban life has increased during recent years, few studies have explored
differences in parasite-host interactions between conspecifics living in rural and urban
habitats [43,44]. Here, we investigate the ectoparasite community of burrowing owls
Athene cunicularia, a non-social, monogamous species [45] studied intensively as a model
for understanding the drivers and consequences of urban invasion. The selection of this
cavity-nester raptor is relevant as nesting cavities provide a stable microclimatic context
for the development of ectoparasites that feed on avian hosts [46]. Moreover, because
burrowing owls may share their burrows with mammals over time (e.g., armadillos Dasy-
podidae, skunks Conepatus sp., or vizcachas Lagostomus maximus [47]), they are likely to
host mammalian ectoparasites and, thus, a wider variety of ectoparasites than other avian
species. Previous research conducted in the same owl population has shown that densities
are notably higher in the city [27], urban individuals being more philopatric and productive
than rural ones [27,35,48]. Rural owls breed in natural grasslands and pastures dedicated
to cattle and crops, where human presence is rare and restricted to some scattered roads.
Urban owls, conversely, breed in private gardens, public parks, free spaces plots among
houses, roundabouts, and large avenues, in continuous contact with people and traffic [35].
The diet of the burrowing owl mainly comprises arthropods and small mammals, but
also small birds, reptiles, and amphibians [49,50], without differences among urban and
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rural breeding territories [51]. During the breeding season, prey are usually consumed
inside or at the entrance of the burrows, which are used not only for breeding but also
as a refuge [52], increasing the likelihood of contact between owls, prey and potential
parasites. Ectoparasite prevalence and load would be higher in nestlings, which need to
mature the immune response, particularly, complement activation [53], than in adults, and
in nests with more conspecifics, which are more frequent in urban than rural areas [54].
Besides, owls in nests located in more arid areas would host less ectoparasites due to the
negative influence of aridity on arthropod survival [55,56]. Testosterone has been linked
to increased parasite susceptibility in different vertebrate groups, whereas estrogen is
often associated with increased resistance against infection [56,57], so it is expected that
males to harbor more ectoparasites than females. As nutritional resources can govern both
growth and resistance to ectoparasites [58,59], a negative relation between owl body mass
and ectoparasite load can be expected. Finally, differences in ectoparasite load between
urban and rural individuals associated with differences in conspecific density but also as
a consequence of the relative absence of other wild animals using burrows in cities can
also be expected. Specifically, we analyzed (i) the influence of individual traits (e.g., sex,
age, body mass), and environmental conditions (e.g., number of conspecifics per burrow,
habitat type, and the aridity of the area) on ectoparasite prevalence, and (ii) the patterns of
ectoparasites co-infection.

2. Materials and Methods
2.1. Study Area and Species

Our study area encompasses 5400 km2, including the urban area of Bahia Blanca and
its surrounding rural expanses (province of Buenos Aires, Argentina) (Figure 1). There,
we monitored the breeding populations of burrowing owls from 2006 to 2020 [36]. Urban
nests were located in private and public gardens, vacant lots among houses, curbs of
the streets, roundabouts, and large avenues, in contact with the intense daily activity
derived from cities. Rural nests, on the contrary, were located in large extensions of
natural or semi-natural grasslands, with very low human presence. It is worth noting that
the city is immediately surrounded by large areas of pastures, and there is no obstacle
precluding the movement of individuals between urban and rural areas. Moreover, as
these owls are able to excavate their own burrows, their distribution is not constrained
by the availability of nesting structures [35]. Studies focused on this host species have
reported more than 60 parasite species across its distribution range, including one virus,
seven protists, seven trematodes, six nematodes, one acanthocephalan, 14 acari (including
soft ticks, Argasidae, and mites), three hippoboscid diptera, one carnid fly, 25 fleas and two
lice (Supplementary Material).

2.2. Sample Collection

During the breeding periods (from November to early February) of 2016–2017 and
2017–2018, we captured 482 urban and 387 rural burrowing owls occupying 424 nests
(226 urban and 198 rural nests; Figure 1) using bow nets and ribbon carpets. Birds were
marked with an individually numbered plastic color ring readable at distance, aged as
chick (including fledgling) or adult, inspected for ectoparasites, measured (wing length,
in mm), and weighed (in g) before releasing them. The number of individuals occupying
each nest, i.e., breeders, nestlings, and individuals delaying dispersal [48], was obtained by
intense monitoring throughout the breeding season [36,45]. The sex of adults was assigned
by plumage pattern coloration [60] or, when needed for adults and nestlings, by molecular
procedures using blood samples [42].
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Figure 1. Location of the study area. Grey and white dots show the location of rural and urban nests
sampled, respectively. Paved (grey) and unpaved (white) roads are also shown.

Ectoparasites were searched for on all parts of the owl’s body by two people during
a 5 min inspection, pulling the feathers apart to detect individuals among them and on
the skin, with special emphasis on the wings, head, and trunk. All ectoparasites found
were removed, counted, and fixed in Eppendorf tubes filled with 97% ethanol for latter
identification in the lab. Ectoparasites were treated and mounted in Canada balsam [61] to
be identified based on published descriptions: lice [62–65]; fleas [66–68]; mites: [69].

2.3. Statistical Analysis

We calculated the prevalence of each ectoparasite species according to [70,71] and
estimated their abundances as the number of each ectoparasite (lice, fleas, and mites)
removed from a bird during 5 min. We used generalized linear latent variable models
(GLLVMs) to assess factors affecting the ectoparasite community composition, considering
patterns of species co-infection [72,73]. GLLVMs were fitted using the gllvm package [74] in
R (version 3.3.2) [75], which incorporates latent variables derived from the Laplace approxi-
mation method implemented through Template Model Builder [76] to investigate species
co-infection patterns while considering the effects of explanatory variables. GLLVMs com-
bine separate species Generalized Linear Models (GLMs) with the effect of explanatory
and latent variables, which account for any residual covariation explained by unknown
variables or factors not included in the model [77]. GLLVMs also allowed us to separate
the relative effect of explanatory and latent variables on ectoparasite co-infection patterns
(due to the extremely low prevalence of Strigiphilus speotyti, the two lice species were
grouped into “lice” for this analysis) and to estimate the strength and direction (+/−) of the
correlations. We fitted a GLLVM considering ectoparasite abundance as dependent variable
(zero-inflated Poisson distribution, log link function). The model included individual body
mass, sex, age (nestling or adult), number of individuals per nest, habitat and aridity as
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explanatory variables, plus the interaction between age and sex. Aridity was calculated as
the Gaussen aridity index GI = ∑ mean precipitation—(2 × mean temperature) [78]. Data
on daily temperature and precipitation for the days employed for samples collection were
obtained from a local meteorological station. We also included the year as a fixed factor
and, to avoid pseudoreplication, the nest as random term in the model. We checked the
strength and sign of correlations between species co-infection using the 95% confidence
interval. The mean coefficients for each variable (and their 95% confidence intervals) were
plotted to determine which coefficients corresponding to the explanatory variables were
statistically significant. The goodness of fit of the model was checked graphically using
Dunn–Smyth residuals [79] and a normal-quantile plot of the residuals using the summary
function of the gllvm package.

3. Results
3.1. Ectoparasite Community

We collected four ectoparasite species in our burrowing owl populations: one mite
belonging to the family Laelapidae (order Mesostigmata) (n = 39), two chewing lice
(Strigiphilus speotyti Ischnocera: Philopteridae (n = 2), and Colpocephalum pectinatum Am-
blycera: Menoponidae) (n = 224), and one flea (Polygenis platensis Rhopalopsyllidae) (n = 51).
With the samples obtained, we were unable to identify the mite to species level (for more
details, see Supplementary Material). Only 106 of the birds sampled (12.2%) harbored any
ectoparasite: 76 (8.76%) had lice (8.64% C. pectinatum, 0.23% S. speotyti, and 0.12% had both
species), 30 (3.50%) had fleas, and 15 (1.73%) were parasitized by mites. Moreover, 4.7%
of owls simultaneously had lice and fleas, 5.6% were parasitized by lice and mites, 3.7%
by fleas and mites, and 0.9% had all three parasite types. No bird harbored all the four
ectoparasites simultaneously (Table 1).

Table 1. Prevalence and abundance of ectoparasites found in rural and urban burrowing owls Athene
cunicularia in Bahía Blanca (Argentina). SD: standard deviation; SU: sex undetermined.

Burrowing Owls Mites Lice Fleas

n Prevalance Mean ± SD Range Prevalence Mean ± SD Range Prevalence Mean ± SD Range

Global 869 1.75% 2.60 ± 4.31 1–18 8.76% 3.01 ± 3.12 1–17 3.50% 1.70 ± 1.02 1–5

Males 237 0.70% 4.00 ± 6.87 1–18 4.21% 3.69 ± 4.01 1–17 1.52% 1.77 ± 1.24 1–5

Females 301 1.05% 1.67 ± 0.71 1–3 4.56% 2.38 ± 1.82 1–8 1.99% 1.65 ± 0.86 1–3

SU 331 1.61% 1.00 ± 0.00 1–1 4.94% 2.60 ± 2.32 1–9 2.30% 1.95 ± 1.13 1–5

Chicks 380 1.52% 2.69 ± 4.63 1–8 5.02% 3.37 ± 3.59 1–17 2.22% 1.95 ± 1.13 1–5

Adults 489 0.23% 2.00 ± 1.41 1–3 3.74% 2.53 ± 2.32 1–9 1.29% 1.27 ± 0.65 1–3

Rural 387 0.35% 1.67 ± 1.15 1–3 4.09% 3.43 ± 3.97 1–17 2.69% 1.65 ± 1.07 1–5

Urban 482 1.40% 2.83 ± 4.80 1–18 4.67% 2.65 ± 2.11 1–8 0.82% 1.86 ± 0.90 1–3

2016–2017 413 3.39% 2.71 ± 4.44 1–18 9.20% 3.26 ± 3.87 1–17 3.87% 1.81 ± 1.16 1–5

2017–2018 456 2.19% 1.00 ± 0.00 1–1 7.89% 2.58 ± 1.87 1–8 2.41% 1.72 ± 0.90 1–3

We found a lower prevalence of mites, fleas and lice in 2017–2018 than in 2016–2017.
Adult owls had fewer mites, lice, and fleas than nestlings, and adult females harbored
more mites than males. Individuals occupying burrows in rural areas had more fleas and
fewer mites than those inhabiting urban areas. Nevertheless, habitat did not influence the
number of lice. The number of mites and fleas was correlated positively with the number
of owls in the family unit, but lice showed the opposite pattern. The number of mites was
negatively related to aridity (GI), while the number of fleas increased along this gradient.
Body mass did not influence the lice number, but affected negatively both fleas and mites
abundance (Figure 2; Table 2).
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Figure 2. Influence of individual traits (sex, age, body mass), and environmental conditions (number
of conspecifics per burrow, habitat type, and the aridity of the area) on the abundance of mites,
fleas and lice in the burrowing owls Athene cunicularia. Estimated coefficients (and 95% confidence
intervals) of the covariates for the three ectoparasite groups. 95% confidence intervals overlapping 0
(dashed vertical line) indicate a non-significant coefficient.
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Table 2. Results of the estimated coefficients of the gllvm model.

Parasite Component Estimate Std. Err. z Value p-Value

Lice

Age −0.9389 0.0879 −10.682 <2 × 10−16 ***
Sex −0.4041 0.0745 −5.426 5.76 × 10−8 ***

Habitat 0.3051 0.1598 1.909 0.0562 *
Nind/nest −0.3988 0.0022 −179.647 <2 × 10−16 ***

Aridity 0.1138 0.1752 0.650 0.51577
Body mass 0.0004 0.0007 0.603 0.54620

Age:Sex 0.6932 0.1091 6.356 2.07 × 10−10 ***

Fleas

Age −1.1969 0.0683 −17.514 <2 × 10−16 ***
Sex −0.0727 0.0125 −5.818 5.94 × 10−9 ***

Habitat 3.4717 0.0805 43.115 <2 × 10−16 ***
Nind/nest 0.3418 0.0469 7.287 3.17 × 10−13 ***

Aridity 0.9466 0.1409 6.718 1.84 × 10−11 ***
Body mass −0.0088 0.0008 −11.187 <2 × 10−16 ***

Age:Sex −0.2483 0.0045 −54.809 <2 × 10−16 ***

Mites

Age −2.6764 0.1419 −18.862 <2 × 10−16 ***
Sex 1.8086 0.1631 11.090 <2 × 10−16 ***

Habitat −1.2081 0.0805 −15.003 <2 × 10−16 ***
Nind/nest 0.1976 0.0761 2.593 0.00951 **

Aridity −0.8150 0.0948 −8.600 <2 × 10−16 ***
Body mass −0.0103 0.0010 −9.963 <2 × 10−16 ***

Age:Sex −0.6797 0.0830 −8.190 2.62 × 10−16 ***

*** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05.

3.2. Co-Infection Pattern

The correlated response model (CRM) including explanatory variables shows a signifi-
cant positive correlation between lice and fleas and a negative correlation between mites
and fleas and mites and lice (Figure 3A). However, in the CRM considering latent variables,
only positive correlation between lice and fleas remains significant (Figure 3B).
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4. Discussion
4.1. Ectoparasite Community and Co-Infection Pattern

In recent years, many studies have contributed to a better understanding of the ec-
toparasites host by burrowing owls through their distribution range. In this study, using
a notably larger sample size than in the rest of the studies [80,81], we found that approx-
imately 12% of the individuals examined in two consecutive breeding seasons harbor at
least one of four ectoparasite species. The flea species detected, Polygenis platensis, has been
previously collected from mammals and birds from South American countries, including
burrowing owls in Argentina [68,82]. This species is a common parasite of rodents and
insectivorous mammals, but also infests carnivores (Procyonidae and Canidae) and hu-
mans [67,83]. The presence of this flea is relevant because Siphonaptera insects are more
associated with mammals than birds, and cases of fleas shared between mammals and
raptors are not common [83]. In our case, the presence of P. platensis can be explained by its
presence in owl’s preys and by the atypical habit of owls to use subterranean holes for nest-
ing and resting, sometimes breeding in burrows previously used by mammals [36,47,48],
which provides a context for further cross-species parasitization. Inside the burrows, the
temperature is more constant and the relative humidity is much higher than outside [84].
This fact, together with the accumulation of decaying material (burrowing owls decorate
the entrance of their burrows with different organic materials [85]) may favor the survival
of arthropods in general, and ectoparasites in particular, so that fleas can be even more
abundant and prevalent in the burrows than in the individuals themselves [81]. As for the
lice recorded, the same species have been identified in burrowing owls in their Northern
and Southern range: Strigiphilus speotyti has been found in individuals from the USA,
Argentina, Chile and Brazil, while Colpocephalum pectinatum appeared in studies performed
in the USA, Argentina, Brazil and Mexico (see details in the Supplementary Material).
Colpochepalum species have been detected in more than ten orders of birds, including
owls [62,86], but Strigiphilus are exclusive to the order Strigiformes [64,86,87]. Fleas, can be
carried by the rodents preyed on by owls, which are often left at the entrance or inside the
nest to feed nestlings. Furthermore, burrowing owls not only serve as potential sources
of food, but can also be used as phoretic hosts, giving protection to such arthropods from
predators, providing thermoregulatory advantages, and facilitating access to habitat for
larvae development within the nest substrate [59]. Finally, mites from the Laelapidae family
found in our burrowing owl populations include several species both free-living and others
that live in association with a wide variety of vertebrates and invertebrates [88,89], so
the presence of an unidentified species in our sampled birds is not surprising. Further
studies are needed to identify the mite species involved and to understand the nature of
the mite-owl interaction.

Host defense (preening) mediates interspecific competition [90]. Abundances of lice
and fleas were positively correlated suggesting that facilitation processes may occur, proba-
bly mediated by host immune response [91]. The contrary happens regarding mites and
fleas, and mites and lice, and could be explained by both competition between such ectopar-
asite groups and/or their negative effect on feather development [92]. On the other hand,
the status of host feather molt and its impact on ectoparasite load [92] remain unknown.
Some feather mites show a mutualistic relationship with their hosts (e.g., cleaning host
feathers [93]. To properly explain the relationship between mites and the other ectoparasite
groups it is necessary to identify the mite species involved and its diet as well, to elucidate
the true nature of this symbiotic relationship.

4.2. Individual and Environmental Factors Explaining Infection Pattern

No lesions nor disease symptoms were detected in the sampled birds. Our results show
that adult owls had fewer ectoparasites (mites, fleas, and lice) than nestlings, coinciding
with other studies [94–96]. Allopreening (mutual preening), whereby the bill is used to
preen the partner’s feathers, is relatively common in burrowing owls [97,98], and more
frequent among adults. This behavior, which has social functions such as reducing stress
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levels [99,100], reinforcing pair bonds [101], and reinforcing social hierarchies [102,103],
could explain the lower prevalence of ectoparasites in adults compared with nestlings. In
addition, the permanence of a large number of nestlings inside the nests (we observed
nests with up to 5–7 fledglings) during their first weeks of life may favor parasitization
and parasite exchange between siblings. Further research is needed to understand whether
these results may be also due to the lower immunocompetence of nestlings, or to the better
nutritional state of adults, or if it is related to other environment or behavioral factors not
considered here [42].

Male and female burrowing owls have similar ectoparasite burden, regarding fleas
and lice, which is common in monomorphic birds [104], but females harbored more mites
(Figure 2). During incubation and the first weeks of chick rearing, females spend more
time inside the nest or at its entrance, being potentially more exposed to parasites. As
before, the differences observed in mite load may be also due to differences in the immune
response [105,106], which could differ not only among individuals but also between males
and females, mainly during the breeding period [107].

Body mass is a reliable indicator of offspring survival in birds and mammals [108]. It
is assumed that heavy birds are able to produce an immune response while maintaining a
relatively large uropygial gland [106]. In Athene cunicularia, the uropygial gland accounts
for ca. 9% of its weight [109]. This could explain the negative relationship between flea
and mite burden and owl body mass. Amblyceran lice (as is the case of C. pectinatum)
occur in contact with and fed in host skin, even obtaining blood. So, it is expected that
amblyceran lice abundance and richness have evolved in response to interaction with the
immune system of the host [110]. In our case, owl body mass did not affect the number
of lice (C. pectinatum). This suggests that the immune response to this amblyceran louse
could be very mild or moderate.

Few studies have compared the ectoparasite burden of urban and rural conspecifics.
For instance, Ancillotto et al., 2018 [111] have found a positive relationship between the
degree of urbanization and the prevalence and abundance of chewing lice and mites in
exotic parakeets in Italy. Wemer et al., 2021 [38] found fewer ectoparasites, lower haemolysis
and lower body mass index in nestling Eurasian kestrels (Falco tinnunculus) from more
urbanized areas compared to those inhabiting less urbanized areas. In our study, we found
differences in the abundance of fleas and mites among owls nesting in urban and rural areas.
Although urban and rural owls include rodents in their diet in similar proportions [58,112],
the presence of mammals that may also breed or shelter in their burrows may explain why
rural owls acquire more fleas than urban ones. Differences in burrow microclimate can also
influence ectoparasite distribution [113].

Flea numbers increased with increasing GI values (that means high rainfall values
and/or low temperature), since such conditions favor arthropod survival [51]. The im-
mature stages of fleas developing in host burrows are sensitive to air temperature and
humidity, with effects on both development and survival times [114]. Larval survival may
be compromised under low humidity conditions (e.g., 40–50%) [115]. On the other hand,
increasing humidity of great tit (Parus major) cavity-nests as a result of flea infestations has
been reported [116].

5. Conclusions

Today, as global human population continues to increase and urbanize, scientists,
conservationists, and politicians agree that understanding the patterns that explain the
biodiversity of cities is a priority for urban planning and nature conservation [117]. Addi-
tionally, there is a growing concern towards the interaction between wildlife diseases and
urban habitats, due to their implications for wildlife conservation and public health. With
this study, integrated in a long-term monitoring program of burrowing owls, we contribute
to understanding the infestation patterns of a raptor species inhabiting both rural and
urban areas, showing how individual and environmental factors influence the ectoparasite
loads and the co-infection patterns. Further research is needed to explore the influence
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of the immune system in the effects caused to the host by the presence and activity of
the ectoparasites detected. A more detailed exploration, including also more host species,
could help to understand the cross-infection between individuals and even between species.
Seasonal characterization of reproductive hormones and stress levels of burrowing owls
could explain the patterns observed in this study. Equally, extending our study to en-
doparasites could offer a complete interpretation of the interactions between parasites and
burrowing owls under different scenarios. Finally, the analysis of the potential impact of
parasites in the breeding performance and survival prospects of individuals inhabiting the
city and rural areas could contribute to acquiring a more complete understanding of the
recent colonization of the city by burrowing owls.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology11081141/s1, Checklist of parasites reported from Athene
cunicularia; Iconography of ectoparasites found in burrowing owls from Bahia Blanca, Argentina.
References [118–154] are cited in the supplementary materials.
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