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24 ABSTRACT

25 Bartonella quintana is a facultative intracellular bacterium responsible for relapsing 

26 fever, an example of non-sterilizing immunity. The cellular sanctuary of B. quintana 

27 in-between febrile relapses remains unknown but repeated detection of B. quintana 

28 in dental pulp specimens suggested long-term half-life dental pulp stem cells 

29 (DPSCs) as candidates. As the capacity of DPSCs to internalize microscopic 

30 particles was unknown, we confirmed that DPSCs internalized B. quintana bacteria: 

31 Gimenez staining and fluorescence microscopy localized B. quintana bacteria inside 

32 DPSCs and this internalization did not affect the cellular multiplication of DPSCs 

33 during a one-month follow-up despite the increase in the bacterial load. B. quintana-

34 infected DPSCs did not produce Tumor Necrosis Factor-α whereas an important 

35 production of Monocytes Chemoattractant Protein-1 was observed. These 

36 unprecedented observations suggested the possibility that DPSCs were shelters for 

37 the long-term persistence of B. quintana in the host, warranting further experimental 

38 and clinical investigations.

39

40 Keywords: Human dental pulp stem cells, internalization, immunity, Bartonella 

41 quintana.
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43 INTRODUCTION 

44 Bartonella quintana is a facultative intracellular gram-negative bacterium described in 

45 1915 as the agent of trench fever, emerging during World War I in soldiers presenting 

46 with fever, headache, sore muscles, bones and joints and skin lesions on the chest 

47 and back1,2. Trench fever is nowadays understood as one of the clinical forms of B. 

48 quintana bacteremia, also responsible for life-threatening endocarditis3–6 and 

49 bacillary angiomatosis in immunocompromised patients7. Further, B. quintana is also 

50 responsible of lymphadenopathy in the lymphatic territory of its inoculation as B. 

51 quintana is an ectoparasite-borne pathogen transmitted from person to person by the 

52 body lice1,8 and probably from cat to persons by cat fleas9. 

53 Trench fever is a relapsing fever and B. quintana has been consistently 

54 observed in circulating erythrocytes during febrile episodes10 yet the site where B. 

55 quintana is residing in-between febrile episodes remains unknown even though the 

56 demonstration that bacillary angiomatosis results from the reactivation of quiescent 

57 B. quintana suggested such a role for endothelial cells as sanctuary cells11,12. 

58 However, neither erythrocytes nor endothelial cells have been demonstrated to 

59 host B. quintana for long, in agreement with the fact that both cell types have a 

60 limited life span time of 120 days for erythrocytes and 100 days for endothelial 

61 cells13,14.

62 Interestingly, B. quintana has been consistently detected in the dental pulp, a 

63 highly vascularized organ with high erythrocyte trafficking15. As for an example, 

64 paleomicrobiology studies detected B. quintana with a prevalence of 2.5% to 21.4% 

65 in the dental pulp collected in buried populations16,17. In one particular burial site of 

66 Remiremont, the prevalence of B. quintana in 45 dental pulp specimens collected 

67 from these 5-10th populations, was as high as 53.3%18. Also, B. quintana has been 
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68 detected in the dental pulp collected from one patient who had been diagnosed with 

69 B. quintana bacteremia six months before tooth extraction and was free of 

70 bacteremia at the time of tooth extraction19.

71 The dental pulp is composed of several cell types including dental pulp stem 

72 cells (DPSCs) which were investigated in the present study. DPSCs are 

73 mesenchymal stem cell isolated by Gronthos in 2000 and characterized by the 

74 expression of markers such as CD73, CD90 and CD105, whereas markers CD34 

75 (hematopoietic progenitor cell antigen) and CD45 (leukocyte common antigen) are 

76 not expressed20,21. 

77 The DPSC stemness capacity correlates with a long lifespan22,23 making them 

78 an attractive cell type to investigate hosting B. quintana for extended period 

79 compatible with clinical reports. In addition, DPSCs are located in the inner area of 

80 dental pulp chamber in close contacts with nerve ending and could be a sentinel cells 

81 for injury and blood-borne pathogen invasion. It has been found that DPSCs present 

82 an immuno-privileged against immune responses 24. Indeed, DPSCs possess an 

83 immunomodulatory activity following LPS stimulation. They produce pro-inflammatory 

84 cytokines such as Interleukin (IL)-6, IL-8, Tumor Necrosis Factor (TNF)-α and 

85 Monocytes Chemoattractant Protein (MCP)-1 to recruit immune cell in the site of 

86 inflammation, and anti-inflammatory cytokines including IL-10 to reduce the 

87 inflammatory and maintain an homeostasis25–27. 

88 Based on this background, the aim of this present study was to investigate the role of 

89 DPSCs in host-pathogen interactions, using B. quintana as a paradigmal organism.

90
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91 MATERIALS AND METHODS

92 Bacterial strain

93 B. quintana ATCC49793 was cultured on Columbia 5% sheep blood agar (COS) 

94 plates (bioMérieux, Craponne, France) at 37°C under a 5% CO2 atmosphere. The 

95 identification of B. quintana was confirmed by matrix-associated laser desorption 

96 ionization/time of flight mass spectrometry (MALDI TOF MS) as previously 

97 described28.

98

99 DPSCs culture. 

100 After obtaining the patient’s informed consent, a wisdom tooth was investigated in 

101 line with advice from the IHU Mediterranean Infection Ethics Committee (Advice, 

102 05/29/2018).  DPSCs obtained from this wisdom tooth were cultured in Dulbecco’s 

103 Modified Eagle Medium F-12 (DMEM/F12, Invitrogen, Villebon-sur-Yvette, France) 

104 supplemented with 10% heat-inactivated foetal calf serum (FBS, qualified, EU-

105 approved, South America origin, Gibco, Paisley, UK) at 37°C under a 5% CO2 

106 atmosphere. DPSCs viability was determined by using the Trypan blue exclusion 

107 assay. This assay is distinctively differentiating non-viable from viable cells based on 

108 the analysis of the integrity of the cell membrane29. Briefly, 50 µL of trypsinated 

109 DPSCs suspension were mixed with 50 µL of a 0.4% solution of Trypan blue dye 

110 (Eurobio, Les Ulis, France) for 1 min at room temperature. Cells were immediately 

111 counted using a Neubauer microchamber (Brand GmbH, Wertheim, Germany) with a 

112 light microscope using a 100 X magnification. 

113

114 DPSCs infection.
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115 B. quintana was collected in sterile tubes from two plates of COS and then washed 

116 twice in a row with sterile phosphate buffered saline (PBS). Infection of DPSCs (6 x 

117 106) with B. quintana in cell culture medium was performed by centrifugation at 3,220 

118 x g for 1 hour. The suspension was then distributed in flasks (SARSTEDT, 

119 Nümbrecht, Germany) (i.e. 2 mL per flask) and incubated at 37°C under 5% CO2 

120 atmosphere for a one month follow-up (12h, 24h, 48h, 72h, 1st, 2th, 3th and 4th week). 

121 DPSCs cultured alone and B. quintana were used as controls. After each incubation 

122 time, cells were washed thrice with sterile PBS and 200 µL of cell suspension were 

123 cytospined for 5 min (Shandon Cytospin 4, Thermo Scientific, Cheshire, UK). The 

124 identification of infected DPSCs was carried by Gimenez staining. 

125

126 Fluorescent in-situ hybridization (FISH)

127 At the second week of infection a FISH was performed after cytospin and fixation of 

128 the slides with 4% paraformaldehyde for 20 min at room temperature. FISH was 

129 carried out as previously described with some modifications30. Briefly, probe 16S488-

130 AATCTTTCTCCCAGAGGG labeled with Alexa-488 fluorochrome (Eurogentec, 

131 Angers, France) targeted B. quintana 16S rRNA gene. The cellular nucleus was 

132 stained in blue using 4',6-diamidino-2-phenylindole (DAPI, Fisher Scientific, Illkirch, 

133 France). Uninfected DPSCs were used as negative controls.

134

135 Cytokine quantification

136 The supernatants in the first week of the first passage of infected DPSCs and third, 

137 fourth weeks of infection were collected to evaluate the concentration of MCP-1 and 

138 TNF-α by using ELISA kits according to the manufacturer's protocols (R&D Systems, 
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139 Rennes, France), the mean minimum detectable dose of human MCP-1 was 1.7 

140 pg/mL and 4.00 pg/mL for human TNF-α. The results were expressed in pg/mL.

141
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143 RESULTS

144 Capacity of DPSCs to internalize B. quintana bacteria 

145 We first investigated whether DPSCs could internalize B. quintana bacteria. Gimenez 

146 staining allowing the staining of intracellular bacteria was our reference method. The 

147 validation of result was performed using a control of uninfected DPSCs and checking 

148 the form of B. quintana by Gimenez staining before infection (Fig. 1). B. quintana 

149 effectively multiplies within DPSCs as indicated by the follow-up from 12 hours of 

150 incubation (Fig. 2). In addition, FISH was carried out in the second week of infection, 

151 confirming the presence of B. quintana within cells (in green) (Fig. 3). The specificity 

152 of the probe was confirmed by a negative control (Fig. 4).

153

154 Immune response of DPSC to B. quintana infection.

155 We further investigated whether B. quintana internalization induced an immune 

156 pattern by DPSCs. B. quintana infection correlated with increased for MCP-1 with 

157 maximum of production in week four from 11175 to 19867.85 pg/mL (Table 1). A 

158 production of MCP-1 was observed in supernatants of uninfected DPSCs but has a 

159 low concentration compared to the infected DPSCs and remains practically stable 

160 between the third and the four weeks of incubation (Table 1). For TNF-α, we 

161 observed an absence of production suggesting an absence of pro-inflammatory 

162 responses TNF-α in infected DPSCs (Supplementary Table S1).

163

164 DISCUSSION

165 We observed that B. quintana was internalized by DPSCs. The infection with 

166 B. quintana did not affected cellular multiplication of DPSCs and despite the increase 

167 in these cells an increase in the numbers of bacteria was observed. Our observations 
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168 support the hypothesis that DPSCs could act as reservoir cells for B. quintana. This 

169 hypothesis is in accordance with a study reported that intracellular B. quintana 

170 bacteria could be internalized into a vacuolic compartment (B. quintana-containing 

171 vacuoles) and multiply31–33. These observations correlate with the persistence of B. 

172 quintana in human34. This is opening an exciting new role for DPSCs and further 

173 exploring their function could be done by additional observations including the co-

174 localization of B. quintana and DPSCs in dental pulp specimens. If confirmed, the 

175 role of DPSCs as sanctuary cells for other pathogens will have to be investigated. 

176 The absence TNF-α production suggests that B. quintana inhibits or alters the 

177 production TNF-α, most likely to favor its replication by avoiding the induction of the 

178 microbicidal activities of the DPSCs and the recruitment of pro inflammatory cells. 

179 Despite the absence of TNF-α production, production of MCP-1 was observed. This 

180 production of MCP-1 has already been described previously as being produced in 

181 large quantities by DPSCs35 and did not induce DPSCs differentiation according to 

182 the literature36,37. In addition, it has been described that infection with the 

183 Chikungunya virus in human peripheral blood mononuclear cells induce a large 

184 production of MCP-1. However, suppression of MCP-1 does not affect replication of 

185 virus38. 

186 The role of MCP-1 remains unclear in B. quintana infection. Further 

187 investigations incorporating MCP-1 blocking antibodies may help defining the role of 

188 MCP-1 in the replication of B. quintana in DPSCs; but this experimental task was 

189 beyond the scope of the present study. Nevertheless, this study is opening a new 

190 venue for DPSCs as sanctuary cells for the long-term survival of relapsing 

191 pathogens.

192
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312 FIGURE LEGENDS

313 Figure 1. Control of DPSCs and B. quintana by Gimenez staining before 

314 infection. (A) Form of B. quintana colored in red (B): uninfected DPSCs colored in 

315 green. 

316

317 Figure 2. Monitoring DPSCs infection by Bartonella quintana (Gimenez 

318 staining).

319 (A): 12-hour inoculation (B): 24-hour inoculation (C): One-week inoculation (D): Four-

320 week inoculation. B. quintana inside DPSCs.

321

322 Figure 3. Microscopic FISHing B. quintana into DPSCs. (A) DAPI filter (350nm) 

323 visualizes cells in blue via the detection of their nuclei (B) FITC filter (488nm) 

324 visualizes the 16S rRNA probe in green (C) merge of the two filters (DAPI and FITC).

325

326 Figure 4. Microscopic FISHing in negative control using the DAPI filter (350 nm) to 

327 visualize cells in blue via the detection of their nuclei (A) and FITC filter (488 nm) for 

328 the 16S rRNA probe (B).

329

330 TABLE LEGEND

331 Table 1. Quantitative determination of human MCP-1 concentrations (pg/mL in cell 

332 culture supernatants by ELISA.

333 Supplementary Table S1. Quantitative determination of human TNF-α 

334 concentrations (pg/mL) in cell culture supernatants by ELISA.

335
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337 Table 1.

Supernatants Concentration MCP-1 (pg/mL)

iDPSCs 19867.85

4th week DPSCs 5250

iDPSCs 12600

3th week DPSCs 5153,58

iDPSCs 11175

First passage to a week DPSCs 4800

338 iDPSC: B. quintana-infected DPSCs.

339

340
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341 Supplementary Table S1. 

Standard curve Samples

(pg/mL) O.D. Supernatants O.D.

1000 1.602 iDPSCs 0.103

500 0.877 4th week DPSCs 0.101

250 0.538

125 0.354 iDPSCs 0.104

62.2 0.22 3th week DPSCs 0.099

31.3 0.159

15.6 0.14 iDPSCs 0.105

0 0.1

First passage 

to a week DPSCs 0.104

342  iDPSC : B. quintana-infected DPSCs.  O.D. : Optical Density.
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