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Abstract 

Background  Sarcoptic mange is one of the main parasitic diseases affecting the Iberian ibex Capra pyrenaica. Scabi‑
etic animals suffer a decline in body condition and reproductive fitness and in severe cases may die. Although several 
previous studies of the pathology of this disease and the physiological changes it produces in ibex have been carried 
out in recent years, our knowledge of the relationship between Sarcoptes scabiei and other ectoparasites of this host is 
still limited.

Methods  We analysed 430 Iberian ibex skin samples. Ectoparasites were removed, counted and identified. Mite (S. 
scabiei) numbers were obtained after digesting the skin samples in a 5% KOH solution. We modelled mite numbers 
in terms of host sex and age, site, year, season and the presence of other ectoparasites such as ticks and lice using 
generalized linear mixed models (GLMMs) and ectoparasite co-occurrence patterns using two different models: the 
probabilistic model species co-occurrence and the generalized linear latent variable model (GLLVM).

Results  The ectoparasite community was mainly composed of S. scabiei, six ticks (Haemaphysalis sulcata, Haema-
physalis punctata, Rhipicephalus bursa, Rhipicephalus turanicus, Dermacentor marginatus and Ixodes ricinus) and two lice 
(Bovicola crassipes and Linognathus stenopsis). Adult male ibex harboured more mites than females. Mite numbers var‑
ied greatly spatially and seasonally and increased with the presence of other parasites. Some positive co-occurrence 
relationships between pairs of different ectoparasites were observed, particularly between ticks. The presence of S. 
scabiei negatively affected lice and H. sulcata numbers.

Conclusions  Sarcoptic mange has spread above all in ibex populations in and around the Mediterranean Basin, 
where it is now found in almost a third of its host’s range. Mite numbers varied seasonally and spatially and were 
higher in male hosts. The presence of S. scabiei had a negative effect on lice numbers but favoured the presence of 
ticks.
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Background
Sarcoptic mange affects wild Caprinae throughout Eura-
sia [1–3]. In the Iberian ibex (Capra pyrenaica), out-
breaks of this parasitic disease have been frequently 
recorded in the literature since the late 1980s, and much 
effort has since been dedicated to investigating the effects 
of sarcoptic mange at the individual and population levels 
in this particular host. As a consequence, certain aspects 
of the biology [4], ecology [5, 6], epidemiology [7, 8], 
physiology [9–12], pathology [13], genetics [14–16], diag-
nostic methods [17, 18] and management [19, 20] of this 
disease in this Caprinae species have only recently been 
explored. Briefly, a catabolic process leads ibex to lose 
weight [5, 10] and causes lesions on the skin and in inner 
organs (which are reversible), which are compounded by 
secondary infections [13] and a loss of reproductive fit-
ness [9, 11]. After reaching its chronic phase, mange may 
kill hosts, although some ibex develop a degree of resist-
ance [21, 22].

Hosts may become concurrently infected with sev-
eral other micro- and macro-parasites [23], as occurs 
in Iberian ibex [24]. Parasites usually interact with each 
other, and these relationships may be antagonistic for at 
least one of the parasites or beneficial for one or both 
interacting parasites [25]. Pedersen and Fenton (2007) 
categorized a range of mechanisms that drive parasite 
interactions, ranging from reciprocal competition (i.e. 
for shared resources) to reciprocal facilitation (e.g. indi-
rectly linked to the host’s immune response). Interac-
tions between parasites may be similarly influenced by 
host traits such as behaviour, ecology, exposure history 
and pathologies [26] that affect the transmission [23, 27], 
distribution [28] and load patterns of parasites [29]. Mor-
bidity induced by one parasite can affect host exposure to 
others, even if they are antagonistic [30], and mortality 
induced by one parasite can reduce the number of hosts 
available for other parasite species [31]. Moreover, the 
pattern of ectoparasite species co-occurrence varies over 
time and space [32].

Recently, Carvalho et al. [33] studied ectoparasite com-
munities in ibex from the Sierra Nevada Natural Space 
(southern Spain). Such communities become richer 
more quickly in scabietic animals than in healthy ones. 
According to these authors, Sarcoptes scabiei infesta-
tions act in tandem with the off-host environment and 
host sex, which define the prevalence and abundance of 
lice and ticks. Bovicola crassipes was more prevalent in 
healthy animals, whereas Linognathus stenopsis was par-
ticularly prevalent in scabietic hosts with a severe clinical 
presentation.

The aims of this study were to (i) determine the occur-
rence of S. scabiei and other ectoparasites in ibex skin 
samples from different sites in Spain within the context 

of a monitoring programme of this disease; (ii) model the 
number of mites as a function of certain host and extrin-
sic factors; and (iii) analyse the co-occurrence patterns 
between these ectoparasites. We hypothesized the fol-
lowing: sarcoptic mange currently spreads through the 
Iberian Peninsula in parallel to host spread; epidemiol-
ogy of sarcoptic mange in the Iberian Peninsula follows 
patterns found in intensively studied ibex population in 
Sierra Nevada (southern Spain); host alopecia caused 
by sarcoptic mange negatively affects lice (permanent 
ectoparasites attached to the host’s hair) but not ticks, 
which are temporal ectoparasites; the immune reaction 
caused by haematophagous parasites (e.g., ticks and suck-
ing lice) may affect the presence of other ectoparasites.

Methods
Study area, sample collection and processing
In 2002–2022, 430 Iberian ibex skin samples (217 from 
males, 160 from females and 53 samples lacking informa-
tion about sex) were provided by the staff of the Sierra 
Nevada Natural Space and the Fundación Artemisan 
(Ciudad Real, Spain). Samples were collected from legally 
hunted ibex harvested in Andalucía, Aragón, Castilla-La 
Mancha, Castilla-León and Región de Murcia (Fig.  1). 
Therefore, no approval by an ethics committee was nec-
essary. A square 10 × 10-cm skin sample was removed 
from the withers of each shot animal, placed in a plastic 
bag, labelled and then frozen until analysis.

Each sample was inspected for ectoparasites, which 
were collected, counted and fixed in 70% ethanol. Lice 
and ticks were identified to species level using available 
morphological keys [5, 34–37]. A 2.5 × 2.5-cm portion of 
each skin sample was removed and digested in a 5% KOH 
solution overnight at 45 °C [4] and the number of mites 
was recorded.

Statistical analysis
The database (n = 430) included 13 variables: ‘mite num-
ber’ or number of Sarcoptes specimens, host ‘sex’ and 
‘age’, ‘site’ (where the host was shot), ‘year’ and ‘season’, 
when the sample was taken: ‘autumn’ (October–Decem-
ber), ‘winter’ (January–March), ‘spring’ (April–June) and 
‘summer’ (July–September), and ‘others’ including the 
number of parasites other than S. scabiei on the host: 
two lice species (‘B. crassipes’ and ‘L. stenopsis’) and five 
tick species (‘Haemaphysalis sulcata’, ‘Haemaphysalis 
punctata’, ‘Rhipicephalus bursa’, ‘Rhipicephalus turanicus’ 
and ‘Dermacentor marginatus’). Ixodes ricinus was not 
included in the analyses because it was present only (one 
adult female) in one host. Like the case of Rhipicephalus 
turanicus in which there are only three individuals.

All statistical analysis was carried out using R version 
4.2.2. [38]. We also compared the number of Sarcoptes 
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on Iberian ibex between seasons and sites separately for 
each year considered. Due to the lack of normality in 
the residuals of the ANOVA for both season and site, we 
used the Kruskal–Wallis test. This test was used to per-
form a comparison between the distributional form of 
the seasonal groups and site with certain simplifications; 
comparisons were carried out on the medians to detect 
significant differences in the number of mites between 
seasonal and site medians. A Dunn test was performed to 
check the multiple comparisons after the Kruskal–Wal-
lis test. We used the kruskal.test() function to conduct 
the Kruskal–Wallis test with the stats package, while the 
Dunn test post hoc comparisons were estimated with 
dunnTest(). Generalized linear mixed models (GLMMs) 
were employed to determine whether sex, age, year, sea-
son and the presence of other parasites affected mite 
densities. We also considered the variable ‘site’ as a ran-
dom factor in the model to avoid pseudoreplication [39]. 
The dependent variable (‘mite number’) had an excess of 
zeros, which required the use of zero-inflated distribu-
tions. Before fitting zero-inflated models, we carried out 
a zero-inflated test with the testZeroInflation() function 

in the DHARMa package in R [40], given that the pres-
ence of many zeros does not necessarily mean that there 
was a zero-inflation problem [41]. Zero-inflated Poisson 
and zero-inflated negative binomial mixed models were 
fitted using the glmmTMB() function of the glmmTMB 
package in R [42]. The conditional and marginal R2 values 
based on [43] were obtained using the package perfor-
mance [44]. There was no substantial correlation between 
explanatory variables when variation inflation factor 
(VIF) values were < 5 [45]. VIFs were obtained using the 
check_collinearity () function the of package performance 
[44]. We plotted the standardized estimates and random 
effects using the plot_model() function in the sjPlot pack-
age [46].

The first approach used to estimate the patterns of 
co-occurrence based on probabilistic model species co-
occurrence [47] used the cooccur() function of the pack-
age cooccur [48]. This analysis uses a hypergeometric 
distribution to calculate the probabilities that a lower or 
higher value of co-occurrence may or may not be ran-
domly obtained.

Fig. 1  Geographical origin of the samples analysed in this study. Red dots: Sarcoptes-positive; blue dots: Sarcoptes-negative
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The second approach, the joint species distribution 
modelling framework, uses generalized linear latent vari-
able models (GLLVMs) to assess how parasite community 
composition is influenced by environmental variation 
while taking into account patterns of species co-occur-
rence [49, 50]. We fitted GLLVMs using the gllvm() func-
tion of the gllvm package [51] in R, which incorporates 
the latent variables derived from the Laplace approxi-
mation method implemented through Template Model 
Builder [52]. The function gllvm() fits pure latent variable 
models (PLVMs) in which species occurrence data are 
regressed only against the latent variables [53].

Correlation between species co-occurrence could 
be due to residual correlation (e.g. unknown variables, 
biotic interactions, etc.), which can be accounted for by 
the latent variables in the PLVM [54]. The strength and 
sign of correlations between species co-infection were 
checked at a 5% significance level. A goodness-of-fit test 
was checked graphically with the summary() function of 
the gllvm package using a normal qq-plot of the residuals 
and the Dunn–Smyth residuals [55].

Results
We identified eight ectoparasite species other than S. 
scabiei on the Iberian ibex skin samples: six tick spe-
cies (H. sulcata, H. punctata, R. bursa, R. turanicus, D. 
marginatus and I. ricinus), together with a biting louse 
(B. crassipes) and a sucking louse (L. stenopsis). Table  1 
summarizes their taxonomy, feeding habits and temporal 
relationship with their hosts.

Sarcoptes scabiei was the most prevalent ectopara-
site, affecting more than 46% of sampled animals. Nev-
ertheless, the prevalence of mange varied significantly 
according to host origin: < 5% in Málaga and Salamanca 
provinces to > 50% in Granada, Jaén and Murcia prov-
inces. Rhipicephalus bursa was found in almost 11% of 
sampled hosts and was the most abundant tick species. 

Bovicola crassipes was the most prevalent lice species, 
although L. stenopsis was the most abundant. The preva-
lence and mean intensity (± standard deviation) of each 
ectoparasite are shown in Table 2.

The Kruskal–Wallis test (Fig. 2) detected significant dif-
ferences between seasons ( χ2=9.5233, P-value = 0.0231) 
and sites ( χ2=59.723, P-value < 0.0001). Post hoc multi-
ple comparisons with the Dunn test showed statistically 
significant differences. The top plot shows differences 
between winter and summer, while the bottom plot 
shows differences between Granada, Jaén and Murcia 
and the other localities.

Goodness of fit of GLMMs and PLVMs was checked 
graphically (see Additional file 1: Figs. S1, S2 and S3) and 
we found that a zero-inflated Poisson distribution fitted 
better than the zero-inflated negative binomial distribu-
tion in the GLMMs. The zero-inflation test gave a ratioO-
bsSim value of 2.0194, where a value of ratioObsSim > 1 
means that there are more zeros than expected (also 
known as zero-inflation), as in our case. The zero-inflated 

Table 1  Relationship between ectoparasites found in this study, including their taxonomic group (at the family level), feeding habits 
and the temporality of their relationship with hosts

Parasite Taxonomic group Feeding habits Temporal relation

Sarcoptes scabiei Acari: Sarcoptidae Microphagous Permanent

Haemaphysalis sulcata Acari: Ixodidae Haematophagous Temporal

H. punctata Acari: Ixodidae Haematophagous Temporal

Rhipicephalus bursa Acari: Ixodidae Haematophagous Temporal

R. turanicus Acari: Ixodidae Haematophagous Temporal

Dermacentor marginatus Acari: Ixodidae Haematophagous Temporal

Ixodes ricinus Acari: Ixodidae Haematophagous Temporal

Bovicola crassipes Phthiraptera: Trichodectidae Dermal debris Permanent

Linognathus stenopsis Phthiraptera: Linognathidae Haematophagous Permanent

Table 2  Basic epidemiological data of the ectoparasites found 
on Iberian ibex

SD standard deviation

Parasite Positive cases Prevalence (%) Mean intensity ± SD

Sarcoptes scabiei 200 46.5 54.4 ± 71.7

Haemaphysalis 
sulcata

22 5.1 3.1 ± 2.2

H. punctata 11 2.6 4.4 ± 5.1

Rhipicephalus bursa 46 10.7 7.5 ± 7.6

R. turanicus 3 0.7 2.0 ± 1.7

Dermacentor 
marginatus

5 1.2 5.8 ± 6.6

Ixodes ricinus 1 0.2 1 ± 0.0

Bovicola crassipes 47 10.9 4.6 ± 9.7

Linognathus 
stenopsis

20 4.7 13.9 ± 33.8
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Poisson GLMM found significant differences for all the 
parameters considered in the model and all P-values were 
below the 5% significance level (i.e. sex, age, year, season 
and others; see Table 3 and Fig. 3). VIF values were all < 3 
for all the explanatory variables in the GLMM (Addi-
tional file 1: Table S1), so our model did not have multi-
collinearity problems. According to the coefficients of the 
model, autumn was the season with the highest number 
of mites on hosts (Fig. 4), males (particularly older ones) 
harboured more mites than females, and the presence of 
other parasites (ticks and/or lice) was negatively affected 
by the number of mites on ibex (see Table 3 and Fig. 3). 
Figure 3 depicts the random effects by levels.

The co-occurrence analysis carried out by the meth-
odology implemented in the cooccur package found six 
pairs of combinations. Figure  5A shows the percentage 
of species pairs that were classified as positive, negative 
or random for all species, and also illustrates whether 
the species tended to have predominantly positive or 

negative interactions. Additionally, this graph shows 
whether these interactions were uniformly distributed, 
since the bars are arranged in increasing (or decreasing) 
order. We found four positive, two negative and nine 
random or undefined associations (Fig.  5B); only sig-
nificant associations are shown and events without co-
occurrence data were removed. The positive associations 
were R. bursa–D. marginatus, R. bursa–H. punctata, 
R. bursa–B. crassipes and D. marginatus–B. crassipes, 
while the negative associations were S. scabiei–H. sulcata 
and S. scabiei–B. crassipes. The rest of the associations 
were classified as random (Fig. 5B). Figure 5C shows the 
observed and expected values of the co-occurrences and 
the degree to which the pairs of parasite species deviate 
from their expected levels of co-occurrence.

The co-occurrence analysis carried out with PLVM 
shows that the patterns of co-occurrence between para-
site species could be attributed to the effects produced 
between the parasites themselves. Figure  6 shows the 

Fig. 2  Variation of mite numbers in different seasons and sites from which skin samples originated
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correlations between the parasite species. We found the 
same associations as with the previous methodology, as 
well as six fresh ones. The positive associations were B. 
crassipes–H. sulcata, D. marginatus–H. sulcata, B. cras-
sipes–L. stenopsis and L. stenopsis–H. sulcata, while the 
negative associations were S. scabiei–D. marginatus and 
S. scabiei–L. stenopsis.

In short, both probabilistic models and PLVM sug-
gest that the patterns of co-occurrence between the six 
ectoparasite species can be attributed to the effects pro-
duced by the parasites themselves. Most of the significant 
correlations between the different ectoparasite pairs were 
positive—for example, those between the ticks; on the 
other hand, the presence of S. scabiei negatively affected 
the number of individuals of the lice species and of D. 
marginatus and H. sulcata (Figs. 5 and 6).

Discussion
Our sampling method (including data on ectoparasites 
from 10 cm2 skin samples from host withers), despite 
being standardized, may represent a limitation of this 
study, as ectoparasites may be unevenly distributed over 
the skin surface. In fact, this may explain the large num-
ber of zeroes in our database.

Other arthropod species such as Dermacentor reticu-
latus, Hyalomma lusitanicum, Psoroptes sp., Trombicula 
sp. [56], Straelensia cynotis [57] and Pulex irritans [58] 
have been reported to parasitize Iberian ibex. These taxa 

were not included in our analyses due to their very low 
prevalence (only one or a very few cases) and lack of data 
on mite numbers, as they were found in other research 
projects.

Geographically, sarcoptic mange mainly affects the ibex 
populations in the Mediterranean Basin but does reach 
the north-west of the Iberian Peninsula (Riaño, Castilla-
León) as well. Currently, this disease is present in over 
28% of the distribution range of C. pyrenaica [59]. It 
spread throughout the whole of the Sierra Nevada moun-
tain range in the 10 years following the detection of the 
first cases (1992), with an estimated mean front spread 
speed of nearly 9 km/year [60]. Moreover, given that 
the Iberian ibex is currently expanding its range [61], a 
similar trend in the future distribution of mange is to be 
expected.

The prevalence values obtained for the different host 
locations (provinces) must be interpreted with cau-
tion since most samples were not obtained randomly 
and mangy animals were more likely to be selectively 
removed in different areas for humanitarian reasons and/
or to manage ibex density and mange spread. In fact, a 
decreasing trend in mange prevalence has recently been 
reported in the ibex population from Sierra Nevada [22] 
despite the fact that more than 58% of samples from this 
location were positive for S. scabiei.

The epidemiological trend observed in our study fits 
that previously reported for the Sierra Nevada Natura 
Space (southern Spain) [4]. As expected, male ibex 

Table 3  Summary of the results of estimates for zero-inflated Poisson GLMM models

From left to right: Parameter of the predictor variable, parameter estimate, estimate standard error (SE), z-value and P-value. In the parameter column, the ZI-intercept 
is the intercept of the zero-inflated part of the model. In the random effects column, τ00Site is the group variance, σ 2 the residual variance, ICC the intraclass correlation 
coefficient, and NSite the levels of the random factor. Autumn, female and no presence of ticks and/or lice are the baseline categories for the categorical explanatory 
variables

Fixed effects Estimate SE z-value P-value

Intercept 2.6302 0.8472 3.105 0.0019

Sex (male) 0.2522 0.0233 10.847 < 0.0001

Age 0.0478 0.0049 9.835 < 0.0001

Spring −0.5636 0.0315 −17.897 < 0.0001

Summer −0.5281 0.0371 −14.219 < 0.0001

Winter −0.3664 0.0359 −10.197 < 0.0001

Others (presence) −0.8332 0.0425 −19.602 < 0.0001

Zero-inflated model Estimate SE z-value P-value

ZI-intercept −0.0157 0.1149 −0.137 0.891

Random effects

 σ 2 1.19

 τ00Site 5.76

ICC 0.87

 NSite 7

Marginal R2/Conditional R2 0.022/0.872
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harboured more mites than females. This is due to physi-
ological differences between the sexes, in particular in 
relation to the activity of sex steroid hormones such as 
testosterone, which has an immunosuppressive effect 
[4, 6]. Seasonal dynamics of mite numbers seem to be 
related to the concentrations of these hormones, with 
higher mite numbers—particularly larvae—coinciding 
with the host rutting season [62].

Nakagawa’s conditional R
2 for the selected zero-

inflated Poisson GLMM explained 87.2% of the variance 
in the number of mites (Table 3). Information regarding 
other factors such as host body weight, kidney fat index 
(KFI) [4], immune response [8, 63] and temperature and 
humidity [64], among others, could improve this model 
in future.

Community resilience closely depends on the nature 
and strength of interspecific interactions [65]. The pre-
dominant pattern of species association within a com-
munity will determine the pattern of the community 
structure such that, for example, if most species asso-
ciations are positive, the community will be structured 
aggregatively, with the frequency of species co-occur-
rence being greater than expected under random species 
assemblage. However, if these associations are negative, 
then the community structure is segregative, with the 
frequency of species co-occurrence being smaller than 
expected under random assemblage [66].

It is likely that competitive interactions between ticks 
and other haematophagous ectoparasites will occur 
due to competition for blood as a food resource [29]. 

Fig. 3  Influence of fixed and random factors on the number of Sarcoptes mites in Iberian ibex (Capra pyrenaica); estimated coefficients (and 
95% confidence intervals) of the covariates for the explanatory variables; overlapping 95% confidence intervals 0 (solid vertical line) indicate a 
non-significant coefficient
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Nevertheless, in our case, most of the significant inter-
specific associations between ibex ectoparasites were 
positive, so the community structure is aggregative and 
stable [33]. Aggregative patterns such as those shown by 
most of the tick species in our study suggest apparent 
facilitation mediated by the host. This facilitation could 
be explained by host immunodepression due to infection 
by multiple parasites [23, 67]. Establishing different types 
of immune responses is likely to be more costly than 
developing just one specific type of response [68]. Conse-
quently, the effectiveness of energy allocation to immune 
defence will decrease as the diversity of parasite attacks 
increases [69]. Tick feeding induces a complex immune 
response in hosts [70]. Competition between tick species 
could also be reduced by temporal differences in emer-
gence and/or attachment to hosts as a kind of segregation 
[71]. Co-occurrence between different lice taxa has not 
often been reported [72]. In our case, B. crassipes and L. 

stenopsis do not compete for food since their diet is quite 
different (Table  1). Again, the immune response devel-
oped by the host due to the haematophagous nature of L. 
stenopsis could facilitate the presence of B. crassipes.

As expected, the presence of S. scabiei negatively 
affected the presence of both lice species [33]. Mange 
induces alopecia in hosts, thereby reducing the ability 
of lice to remain attached to hosts. Nevertheless, these 
mites were also negatively associated with D. marginatus 
and H. sulcata, which suggests a cross-effective immune 
response in hosts [25].

As ibex are also infected by endoparasites, most of the 
possible interactions throughout the whole parasite com-
munity remain unexplored, which constitutes a challenge 
for future research.

Fig. 4  Monthly dynamics of Sarcoptes scabiei numbers. Points refer to the monthly mean value for mite numbers; bars represent the standard 
deviation; the blue line represents the smoothed average values; the grey area is the associated 95% confidence intervals
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Conclusions
Our data evidence that sarcoptic mange is spreading 
across the Iberian Peninsula, parallel to host dispersal, 

as had been hypothesized. As previously reported 
for the Sierra Nevada ibex population, the number of 
mites and therefore the effects of this disease are biased 
toward host males and have a clear seasonal pattern; 
therefore, our starting hypothesis is also confirmed. 
Sarcoptes scabiei, together with five tick and two lice 
species, form a stable ectoparasite community in which 
the presence of mites usually favours the presence 
of ticks but constrains lice numbers, confirming our 
hypothesis in this regard. Some authors suggest per-
forming manipulative experiments (e.g., involving the 
extirpation of one ectoparasite species) to confirm the 
reliability of such interspecific associations between 
ectoparasites) [33]. Nevertheless, such experiments are 
logistically challenging, as they need completely spe-
cific methods for removing a particular ectoparasitic 
species with no effects for the remaining ones. Further 
studies will allow us to assess potential co-infection 
patterns between S. scabiei and ibex endoparasites.
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