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Abstract: Sucking lice are obligate ectoparasites of mammalian hosts, causing serious public health
problems and economic losses worldwide. It is well known that sucking lice have fragmented
mitochondrial (mt) genomes, but many remain undetermined. To better understand patterns of
mt genome fragmentation in the sucking lice, we sequenced the mt genome of the buffalo louse
Haematopinus tuberculatus using next-generation sequencing (NGS). The mt genome of H. tuberculatus
has ten circular minichromosomes containing a total of 37 genes. Each minichromosome is 2.9–5.0 kb
long and carries one to eight genes plus one large non-coding region. The number of mt minichro-
mosomes of H. tuberculatus (ten) is different from those of congeneric species (horse louse H. asini,
domestic pig louse H. suis and wild pig louse H. apri) and other sucking lice. Two events (gene
translocation and merger of mt minichromosome) are observed in Haematopinus. Compared to other
studies, our phylogeny generated from mt genome datasets showed a different topology, suggesting
that inclusion of data other than mt genomes would be required to resolve phylogeny of sucking lice.
To our knowledge, this is the first report of a ten mt minichromosomes genome in sucking lice, which
opens a new outlook into unexplored mt genome fragmentation patterns in sucking lice.

Keywords: buffalo louse; fragmented mt genome; recombination; phylogenetic analyses

1. Introduction

The sucking lice (Psocodea: Anoplura) are obligate ectoparasites of eutherian mam-
mals. There are approximately 540 known species in 15 families [1]. The single genus
family Haematopinidae contains 21 described species, which are important ectoparasites
of domestic animals that cause significant economic losses [2,3]. In addition, Haematopinus
species are vectors of several pathogens, such as African swine fever virus [4], swinepox
virus [5], classical swine fever virus [6] and Anaplasma spp. [7].

Metazoan mitochondrial (mt) genomes are usually circular DNA molecules of 13–20 kb
with 36–37 genes including 12–13 protein-coding genes, two rRNA genes and 22 tRNA
genes [8–10]. However, mt genomes of eutherian mammalian lice and some avian lice
exhibit diverse fragmentation patterns. An example of an extremely fragmented mt genome
is the human body louse Pediculus humanus humanus with 20 mt minichromosomes [11].
To date, the mt genomes of 21 sucking lice species (12 complete mt genomes and 9 incom-
plete mt genomes) have been sequenced, all are extensively fragmented with different
numbers of minichromosomes [11–22]. Often, mt gene arrangement and composition are
stable among members of a louse genus [12,17,19]; however, substantial variation in mt
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karyotype, the number of mt minichromosomes, gene arrangement and gene content has
been also reported among congeneric lice, including sucking lice. In primate lice, the
human louse P. humanus and chimpanzee louse P. schaeffi have 20 and 18 minichromo-
somes, respectively [12,17]. Macaque louse Pedicinus obtusus and colobus louse P. badii
have 12 and 14 minichromosomes, respectively [19]. The goat louse Bovicola caprae of 13
minichromosomes is different from cattle louse B. bovis and sheep louse B. ovis (12 minichro-
mosomes) [23]. Furthermore, variation in congeneric avian lice has also been found in
pigeon lice, Columbicola columbae, C. macrourae, C. passerinae 1 and C. passerinae 2 have 15,
16, 17 and 17 minichromosomes, respectively [24]. Conversely while the horse louse H.
asini, pig louse H. suis and wild pig louse H. apri all have nine mt minichromosomes [13,16],
gene content and gene order of three minichromosomes in H. asini differ from those of
H. suis and H. apri. Interestingly, the mt genomes of both H. suis and H. apri also have
tRNA pseudogenes [13]. Based on these findings, we hypothesize that various mt genome
fragmentation patterns exist in the genus Haematopinus. However, this hypothesis is built
on only three Haematopinus species [13,16], thus, there is a need to obtain more mt genomes
to test this hypothesis.

To further explore mt genome evolution in Haematopinus, we used next-generation
sequencing (NGS) on H. tuberculatus. We found that the mt genome of H. tuberculatus is
fragmented into ten circular minichromosomes. We analyzed mt genome fragmentation
pattern and phylogeny, as well as variation in mt minichromosome composition and
recombination with in the genus Haematopinus. Our results are invaluable in understanding
the evolution of fragmented mt genomes in the sucking lice.

2. Results and Discussion
2.1. General Features of the mt Genome of the Buffalo Louse H. tuberculatus

Sequencing the H. tuberculatus genome produced 3.4 Gb of Illumina short-read se-
quence data, a total of 6,710,412 × 2 raw reads. After quality filtration, 3,841,215 × 2 clean
reads were suitable for assembly of the mt genome. Assembling these sequence-reads into
contigs, identified all 37 mt genes including 13 protein-coding genes, 22 tRNA genes and
two rRNA genes, typical of bilateral animals. There are ten minichromosomes (Figure 1;
Table 1); each minichromosome is 2.9–5.0 kb in size and consists of a coding region and
one non-coding regions (NCR) (Table 1). The coding regions have 1–8 genes each and vary
in size from 67 bp to 2627 bp (Table 1). All genes are in identical orientation relative to
the transcription origin except trnT, nad1 and trnQ (Figure 1). The raw data (BioProject
accession number: PRJNA883441) and nucleotide sequences (GenBank accession numbers:
ON416547-56) of H. tuberculatus have been deposited in the NCBI database.

The NCR is composed largely of motifs conserved between different minichromo-
somes [24], and this region includes the D-loop which is involved in DNA replication
and the initiation of transcription [25]. We assembled the full-length NCRs for all mt
minichromosomes of H. tuberculatus, which ranged from 2280 bp (trnH-nad5-trnF-nad6
minichromosome) to 2901 bp (trnR-nad4L minichromosome) in size (Table 1). The longest
NCR (2901 bp) in the buffalo louse H. tuberculatus is shorter than that in the horse louse H.
anisi (3264 bp) [16], while it is longer than those of other sucking lice. As in most parvorder
Anoplura, there is a GC-rich motif (70 bp, 55.7% C and G) downstream of the 3′-end of the
coding region in each NCR. Remarkably, the AT-rich motif (54 bp, 94.4% A and T) is in the
middle of the NCR, rather than upstream of the 5′-end of coding region, differing from
other parvorder Anoplura [11–13].
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Figure 1. The complete mitochondrial genome of the buffalo louse, Haematopinus tuberculatus. Each 
minichromosome has a coding region and a non-coding region (NCR, in black). The names and 
transcript orientation of genes are indicated in the coding region and the minichromosomes are in 
alphabetical order of protein-coding genes and rRNA genes. Abbreviations: atp6 and atp8, ATP syn-
thase F0 subunits 6 and 8; cob, cytochrome b; cox1–3, cytochrome c oxidase subunits 1–3; nad1–6 and 
nad4L, NADH dehydrogenase subunits 1–6 and 4L; rrnS and rrnL, small and large subunits of ribo-
somal RNA. tRNA genes are indicated with their single-letter abbreviations of the corresponding 
amino acids. 

Table 1. Mitochondrial minichromosomes of the buffalo louse Haematopinus tuberculatus, deter-
mined by next-generation sequencing using Illumina. 

Minichromosome Size (bp) Size of Coding 
Region (bp) 

Size of Non-Coding 
Region (bp) 

trnK-nad4-atp8-atp6-trnN 4673 2281 2392 
trnE-cytb-trnV 4013 1216 2797 

nad2-trnI-cox1-trnL2 5019 2627 2392 
trnD-trnY-cox2-trnS1-trnS2-trnP-cox3-

trnA 3400 1882 1518 

trnQ (−) -nad1 (−) -trnT (−) -trnG-nad3-
trnW 

4079 1506 2573 

trnR-nad4L 4369 344 4025 
trnH-nad5-trnF-nad6 4508 2,228 2280 

rrnS-trnC 3586 793 2793 
trnL1-rrnL 3882 1211 2671 

trnM 2966 67 2899 
Total 40,495 14,155 26,340 

Note: minus (−) indicates the mt genes have the opposite orientation of transcription relative to the 
non-coding region. 

The NCR is composed largely of motifs conserved between different minichromo-
somes [24], and this region includes the D-loop which is involved in DNA replication and 
the initiation of transcription [25]. We assembled the full-length NCRs for all mt minichro-

Figure 1. The complete mitochondrial genome of the buffalo louse, Haematopinus tuberculatus. Each
minichromosome has a coding region and a non-coding region (NCR, in black). The names and
transcript orientation of genes are indicated in the coding region and the minichromosomes are in
alphabetical order of protein-coding genes and rRNA genes. Abbreviations: atp6 and atp8, ATP
synthase F0 subunits 6 and 8; cob, cytochrome b; cox1–3, cytochrome c oxidase subunits 1–3; nad1–6
and nad4L, NADH dehydrogenase subunits 1–6 and 4L; rrnS and rrnL, small and large subunits of
ribosomal RNA. tRNA genes are indicated with their single-letter abbreviations of the corresponding
amino acids.

Table 1. Mitochondrial minichromosomes of the buffalo louse Haematopinus tuberculatus, determined
by next-generation sequencing using Illumina.

Minichromosome Size
(bp)

Size of Coding
Region (bp)

Size of Non-Coding
Region (bp)

trnK-nad4-atp8-atp6-trnN 4673 2281 2392
trnE-cytb-trnV 4013 1216 2797

nad2-trnI-cox1-trnL2 5019 2627 2392
trnD-trnY-cox2-trnS1-trnS2-trnP-cox3-trnA 3400 1882 1518

trnQ (−) -nad1 (−) -trnT (−)
-trnG-nad3-trnW 4079 1506 2573

trnR-nad4L 4369 344 4025
trnH-nad5-trnF-nad6 4508 2,228 2280

rrnS-trnC 3586 793 2793
trnL1-rrnL 3882 1211 2671

trnM 2966 67 2899
Total 40,495 14,155 26,340

Note: minus (−) indicates the mt genes have the opposite orientation of transcription relative to the non-
coding region.

2.2. Numbers of Minichromosomes among Parvorder Anoplura

All sucking lice sequenced to date have fragmented mt genome with variable numbers
of, i.e., 9, 11, 12, 14, 18 or 20 minichromosomes. All mt genes have been identified in each of
the 13 complete mt genomes, each circular minichromosome comprises one coding region
and one NCR (Figure 2). An additional nine incomplete mt genomes of sucking lice are
shown in Figure S1. Previous studies have suggested that fragmented mt minichromosomes
are under strong selection to remain functional, and the related function may be affected
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along with an increased number of mt minichromosomes [26,27]. In the present study, we
identified a novel pattern in the mt genome of H. tuberculatus with ten minichromosomes.
Previous studies have indicated that the number of mt minichromosomes is evolutionarily
unstable across Anoplura, even between congeneric species [12,17,19]. The substantial
variation in the number of mt minichromosomes among Anoplura suggests that the process
of mt genome fragmentation is a continuous process.
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Figure 2. Numbers of mitochondrial minichromosomes of 12 sucking lice which all genes were
identified in the mt genome.

2.3. Variation in mt Minichromosomal Composition among Haematopinus Lice

H. suis, H. apri and H. asini each have nine mt minichromosomes [13,16]; however, H.
tuberculatus has ten. The distribution of genes across the nine minichromosomes is identical
between H. suis and H. apri [13]. Six minichromosomes in H. tuberculatus have the same
gene content and gene order as their counterparts in H. asini, H. suis and H. apri, but the
remaining differs [13,16]. In H. suis/apri, one minichromosome carries four genes, i.e., trnR-
nad4L-nad6-trnM, which are found on three separated minichromosomes in H. tuberculatus
(Figure 3) and H. asini [16]. In H. tuberculatus and H. asini, one minichromosome has four
genes, trnH-nad5-trnF-nad6 (Figure 3), however, in H. suis and H. apri, the corresponding
minichromosome has only three genes, trnH-nad5-trnF [13]. In H. tuberculatus, H. suis
and H. apri, one minichromosome has two genes, rrnS-trnC (Figure 3). In contrast, this
minichromosome in H. asini has four genes, trnR-nad4L-rrnS-trnC. In H. tuberculatus and
H. asini, trnM occurs on its own minichromosome (Figure 3), however, in H. suis and H.
apri, trnM is along with trnR-nad4L and nad6. These results clearly show the substantial
variation in mt karyotype among Haematopinus species. Several previous studies compared
mt genomes between the lice within the same genus, and showed substantial variation in
mt karyotypes [14,19–24]. Taken together, these studies indicate that intra-genus variation
in mt minichromosome composition is common in lice.
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Figure 3. The differences among all minichromosomes of four Haematopinus lice. (a) Ten circular
minichromosomes of Haematopinus tuberculatus; (b) Nine circular minichromosomes of H. asini;
(c) nine circular minichromosomes of H. suis. (d) Nine circular minichromosomes of H. apri. See
Figure 1 legend for gene name abbreviation, pV indicates pseudo trnV. * indicates the identical
minichromosomes identified among four Haematopinus lice.

2.4. Recombination of mt Minichromosomes in the Haematopinus Lice

Recombination has been proposed as a possible mechanism contributing to the evo-
lution of mt genome fragmentation across animal clades [27]. Long identical nucleotide
sequences ranging from 14 to 133 bp are shared between mt genes, providing evidence
for recombination between mt minichromosomes in sucking lice [11–17]. Similarly, seven
stretches of identical nucleotide sequences, 7 to 32 bp long, were found between five pairs
of mt genes in the buffalo louse (Table 2). trnL1 and trnL2 share three stretches of identical
sequences of 7, 11 and 25 bp long. Meanwhile, in pig lice, the two genes share 9, 10 and
16 bp long identical sequences, whereas in horse louse these two genes share 15 bp long
identical sequences with one another (Table 2). rrnL and rrnS share two stretches of identi-
cal sequences, 10 and 33 bp long, in H. asini; however, in H. suis, H. apri and H. tuberculatus,
these two genes share only one stretch, 9 to 11 bp long of identical sequence, suggesting
that recombination is occasional (Table 2). Previous studies found that recombination
among tRNA genes could affect tRNA secondary structures [12,16]. Among Haematopinus,
in addition to the pair of tRNA genes mentioned above, trnP and trnT share longer identical
sequences than expected in H. suis (26 bp), H. apri (26 bp) and H. asini (27 bp), respectively.
Nevertheless, in H. tuberculatus, the two genes only share 7 bp long identical sequences as
other sucking lice do (Table 2). Among protein-coding genes, atp8 and atp6 in H. tuberculatus
share a 32 bp identical sequence, three to four times more than expected by chance (Table 2),
nad4 and cox1 share a 19 bp identical sequence in H. tuberculatus, and share 12 and 18 bp
identical sequences in H. suis, but do not share longer-than expected identical sequences
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in H. asini and H. apri. Meanwhile, nad4 and cytb share 17 bp in H. tuberculatus; and 20 bp
in H. asini, but no longer-than expected identical sequences are seen in H. suis and H. apri,
nor in other sucking lice (Table 2). There is a 14 bp identical sequence shared by nad4L and
trnV genes in H. tuberculatus, which is approximately twice as in other sucking lice. These
results indicate that recombination is a likely cause of shared identical sequences between
mt genes in Haematopinus lice.

Gene translocation between mt minichromosomes has been reported in the horse louse
H. asini [16] and in the shrew louse P. reclinate [21], indicating that it is common in sucking
lice. In the present study, translocations in Haematopinus lice can be also accounted for by
two events of recombination. Firstly, in H. suis/apri, a nad6 moved from the trnR-nad4L-
nad6-trnM minichromosome to the trnH-nad5-trnF to generate a new minichromosome
trnH-nad5-trnF-nad6 in H. tuberculatus (Figure 1) and H. asini [16]. Second, in H. suis/apri,
trnR-nad4L transferred from the minichromosome that contained trnR-nad4L-nad6-trnM,
while in H. tuberculatus, trnR-nad4L moved to rrnS-trnC to generate a minichromosome,
trnR-nad4L-rrnS-trnC in H. asini (Figure 1). These results suggest that recombination
resulted in gene translocation between mt minichromosomes.

Previous studies have showed that merging and splitting occur between the minichro-
mosomes of sucking lice [18,19,22]. Specifically, mergers but no split have been previously
observed in Haematopinus spp. Sequenced [18]. Two mergers occurred in H. tuberculatus
in the current study. First, the ancestral minichromosomes, trnK-nad4 and atp8-atp6-trnN,
merged into one minichromosome, trnK-nad4-atp8-atp6-trnN (Figure 4). Second, nad2 and
trnI-cox1-trnL2 merged into nad2-trnI-cox1-trnL2 (Figure 4). These data suggest that mt
minichromosome merging is common in H. tuberculatus.
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tuberculatus. Gene name and transcription orientation are indicated in the coding region; non-
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Table 2. Long stretches of identical sequence shared between mitochondrial genes in the buffalo louse, Haematopinus tuberculatus.

Long Stretches of Identical Sequence Shared (bp)

Pairs of Genes Buffalo
Louse

Horse
Louse Pig Lice Primate Lice Guanaco

Louse Rodent Lice

Hat Haas Has Haap Phc Phh Ptp Pes Peb Peo Mip Hok Hoa Hosp Poa Pos Por
cox1 nad4 19 11 12, 18 11 13, 18 13, 18 11 14 11 11 10 14 10 13 18 10 11
nad4 cytb 17 20 10 10 11 11 15 12 14 13 11 11 10 9 11 12 11
atp8 atp6 32 9 9 9 10 10 8 11 11 9 11 9 10 9 8 8 9

nad4L trnV 14 8 8 8 7 7 6 7 7 10 6 8 6 6 7 6 7
rrnL rrnS 11 10, 33 10 9 11 11 10 12 10 11 10 9 13 9 10 10 10
trnL1 trnL2 7, 11, 25 15 9, 10, 16 9, 10, 16 32, 33 32, 33 32, 35 32, 34 8, 14, 32 32, 32 7, 10, 27 7 N/A 8 28 6, 11, 25 10, 25
trnT trnP 7 27 26 26 7 7 6 8 7 7 6 7 7 6 6 7 8

Note: Abbreviations of species names are: Hat, Haematopinus tuberculatus (buffalo louse); Haas, Haematopinus asini (horse louse); Has, Haematopinus suis (domestic pig louse); Haap,
Haematopinus apri (wild pig louse); Phc, Pediculus humanus capitis (human head louse); Phh, Pediculus humanus humanus (human body louse); Ptp, Pthirus pubis (human pubic louse); Pes,
Pediculus schaeffi (chimpanzee louse); Peb, Pedicinus badii (monkey louse); Peo, Pedicinus obtutas (monkey louse); Mip, Microthoracius praelongiceps (guanaco louse); Hok, Hoplopleura kitti
(rat louse); Hoa, Hoplopleura akanezumi (mouse louse); Hosp, Hoplopleura sp. (rat louse); Poa, Polyplax asiatica (rat louse); Pos, Polyplax spinulosa (rat louse); Por, Polyplax reclinata (shrew
louse); N/A, not available. Stretches of shared identical sequences longer than expected by chance are in bold.
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2.5. Phylogenetic Relationships

In the present study, the monophyly of Haematopinus (Haematopinidae), Polyplax (Poly-
placidae) and Hoplopleura (Hoplopleuridae) was strongly supported by Bayesian inference
(BI) analysis (Bpp = 0.9) and maximum likelihood (ML) analysis (Bv = 100) (Figure 5). The
family Haematopinidae was sister to a clade of the families Polyplacidae + Hoplopleuridae
to the exclusion of the families Pediculidae, Pthiridae and Pedicinidae with strong BI sup-
port (Bpp = 1.0) and moderate ML support (Bv = 49) (Figure 5). These results are consistent
with those observed in the previous studies using nuclear genomic sequences [28,29]. In
employing mt genomic datasets, however, several studies have indicated that the family
Haematopinidae and families Pediculidae + Pthiridae + Pedicinidae were more closely
related than to the families Polyplacidae and Hoplopleuridae with strong BI support
(Bpp = 1.0), but weak support in ML analyses [19,21,30]. The mt genome is a valuable ge-
netic marker for phylogenetic and evolutionary studies of different organisms because of its
lacking of recombination, low mutation rate, and matrilineal inheritance [31–33]. However,
recombination is found frequently in the fragmented mt genomes of Anoplura lice [27].
Recombination in mt genomes has substantial effects on phylogenetic and evolutionary
studies that utilize mt genes [34–36]. The traditional methods for phylogenetic analysis
are based on the assumption that mtDNA does not recombine; ignoring the occurrence of
recombination can lead to incorrect phylogenetic reconstruction and positive selection anal-
yses [37,38]. Collectively, our data along with others suggest that the deeper relationships
among families within the parvorder Anoplura are challenge to resolve due to occurrence
of recombination. Consequently, inclusion of data other than mt genomes would be greatly
helpful in order to resolve phylogeny of sucking lice.
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Bayesian inference method (BI) and maximum likelihood (ML) of deduced amino acid sequences
of eight mitochondrial proteins using MrBayes and IQ-Tree. The elephant louse, Haematomyzus
elephantis, was used as the outgroup. Posterior probability values (Bpp) and bootstrap values (Bv) are
indicated at nodes.

3. Materials and Methods
3.1. Sample Collection and DNA Extraction

Adult lice H. tuberculatus were collected from naturally infected buffalo Bubalus bubalis
in Khyber Pakhtunkhwa province, Pakistan. They were identified to species morpholog-
ically [1], and stored in 100% (v/v) ethanol at −40 ◦C after five washes in physiological
saline. Total genomic DNA was extracted from ten individual lice (five females and five
males) using the DNeasy Tissue Kit (Promega, Madison, USA) according to the manufac-
turer’s protocol. The molecular identity of each sucking louse as H. tuberculatus was further
verified by PCR-based sequencing of regions in the mt cox1 and rrnS genes as previously
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described [20]. The cox1 gene sequences of H. tuberculatus were 100% identical to that of H.
tuberculatus (GenBank accession no: EU375757) from Bubalus bubalis in the United Kingdom.

3.2. Sequencing and Assembling

DNA concentration of each sample was determined using the Qubit system (Thermo
Fisher Scientific, Waltham, MA, USA). Total DNA sequencing was performed by Novogene
Bioinformatics Technology Co., Ltd. (Tianjing, China) using the Illumina HiSeq2500 plat-
form (Illumina, San Diego, CA, USA) to produce 2 × 250 bp paired-end reads and raw data
were recorded in FASTQ format. The raw reads were filtered to remove containing adaptor
sequences and low-quality reads (the ‘N’ percent of one end > 5%, average quality score
Q < 20 and length < 75 bp after trimming) using Trimmomatic v.0.32 [39]. The mt cox1 and
rrnS sequences of H. tuberculatus were used as the initial references to de novo assembled
the clean reads using Geneious Prime 2020 (www.geneious.com, accessed on 1 November
2021). The assembly parameters were: minimum overlap identity 99%, maximum 3% gaps
per read, maximum gap 5 bp and minimum overlap 150 bp. A circular minichromosome
was identified if both ends of a contig overlapped. Previous studies [18,19] showed that
the NCR are highly conserved among the mt minichromosomes of a sucking louse. The
conserved NCR sequences were identified between the mt cox1 and rrnS minichromosomes
and were used as references to align the clean read sequence dataset. This allowed us to
extract sequence reads derived from the two ends of the coding regions of all other mt
minichromosomes. We then assembled all minichromosomes individually in full length
using the same method stated above for mt cox1 and rrnS minichromosome assembly.

3.3. Verification of mt Minichromosomes

The size and circular organization of each mt minichromosome of H. tuberculatus
were verified by long PCR using specific primers (Table S1), which were designed from
the coding region of each minichromosome using the Primer Premier 5.0 (Premier Biosoft
Interpairs, Palo Alto, CA, USA). The forward primer and reverse primer of each pair were
next to each other with a small gap or no gap in between. PCR with these primers amplified
each circular minichromosome in full or near full size if it had a circular organization
(Figure S2). These positive amplicons were also sequenced with Illumina HiSeq2500
platform as described above. To obtain full-length and accurate sequences of the NCR of
the all minichromosomes, we have re-assembled the NCR of each mt minichromosome
using these obtained sequences according to the same method.

3.4. Annotation and Visualization

Genes were predicted with MITOS web server (http://mitos.bioinf.uni-leipzig.de/
index.py, accessed on 5 November 2021) [40] and manually curated. Sequences of each
protein-coding gene were then aligned against the corresponding gene of H. suis [13] and
H. asini [16] using the MAFFT 7.263 software [41] to further identify gene boundaries.
The location of protein-coding genes was further confirmed in ORFfinder (https://www.
ncbi.nlm.nih.gov/orffinder/, accessed on 5 November 2021). Amino acid sequences of
each protein-coding genes were inferred using MEGA 11 [42], and deduced amino acid
sequences were used in BLAST searches of the protein database of GenBank. tRNA
genes were identified using the program tRNAscan-SE [43] and ARWEN [44], and rRNA
genes were identified with BLAST searches of the NCBI database and in comparison with
alignments from H. suis [13] and H. asini [16]. The circular map of H. tuberculatus mt genome
was illustrated using Microsoft PowerPoint v.2021.

3.5. Phylogenetic Analysis

Amino acid sequences inferred from the nucleotide sequences of 11 mt protein-coding
genes common (nad2 and nad5 excluded because these genes are unidentified in H. kitti and
H. elephantis) for all sucking lice (Table 3), using the elephant louse species, H. elephantis
(GenBank: KF933032-41) as an outgroup [45]. The deduced amino acid sequences were

www.geneious.com
http://mitos.bioinf.uni-leipzig.de/index.py
http://mitos.bioinf.uni-leipzig.de/index.py
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
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aligned individually using MAFFT 7.122 and concatenated to form a single dataset; ambigu-
ously aligned regions were excluded using Gblocks 0.91b using default parameters [46].

Table 3. The sucking lice included in phylogenetic analyses in this study.

Species Host GenBank Accession
Number Reference

Haematopinus apri Wild pig KC814611-19 [13]

Haematopinus asini Horse
KF939318, KF939322,

KF939324,
KF939326, KJ434034-38

[16]

Haematopinus suis Domestic pig KC814602-10 [13]
Hoplopleura kitti Rat KJ648933-43 [14]
Hoplopleura sp. Rat MT792483-94 [20]

Microthoracius praelongiceps Guanaco KX090378-KX090389 [18]
Pediculus humanus capitis Human JX080388-407 [12]

Pediculus humanus humanus Human FJ499473-90 [11]
Pediculus schaeffi Chimpanzee KC241882-97, KR706168-69 [17]
Pedicinus badii Monkey MT721726-37 [19]

Pedicinus obtutas Monkey MT792495–506 [20]

Pthirus pubis Human JQ976018, MT721740,
HM241895-8, EU219987-95

[12]
[19]

Polyplax asiatica Rat KF647751-61 [15]
Polyplax reclinata Shrew MW291451-61 [21]
Polyplax spinulosa Rat KF647762-72 [15]

Haematopinus tuberculatus Buffalo OP574152-61 Present study

Phylogenetic analyses were conducted using two methods: BI and ML. BI was carried
out using MrBayes 3.2.6 [47]. The most suitable model (MtArt) of evolution was selected
by ProtTest 3.4 [48] at the default setting based on the Akaike information criterion (AIC).
As MtArt model is a very recent addition to the models commonly used, we could not
implement it in the current version of MrBayes, which used the best scoring alternative
model MtREV. Four independent Markov chains (three heated and one cold) were run
simultaneously for 1,000,000 metropolis coupled MCMC generations, sampling a tree every
100 generations. The first 2500 trees represented burn-in, and the remaining trees were
tested for stability of likelihood values and used to compute Bayesian posterior probabilities
(Bpp). We assumed that stationarity had been reached when the estimated sample size (ESS)
was greater than 100, the potential scale reduction factor (PSRF) approached 1.0 and the av-
erage standard deviation of split frequencies (ASDSF) was < 0.01. ML was conducted with
IQ-TREE v.2.1.3 [49]. The “Auto” option was set under the best evolutionary models, and
the ML trees were constructed using an ultrafast bootstrap approximation approach with
10,000 replicates. The Bootstrap value (Bv) was calculated using 100 bootstrap replicates.
Phylogenetic trees were drawn using FigTree v.1.42.

4. Conclusions

The newly-described mt genome of H. tuberculatus presented here has a novel mt
genome fragmentation pattern, differing from other three Haematopinus lice, proved our
hypothesis. Our findings indicate that recombination plays a major role in generating the
variation in the composition of mt minichromosomes among Haematopinus lice. Compared
to other studies, our phylogeny generated from mt genome datasets showed a different
topology. Therefore, inclusion of data other than mt genomes would be required to resolve
phylogeny of sucking lice. This is the first report of a mt genome with ten mt minichromo-
somes in sucking lice, which opened new outlook into unexplored fragmentation pattern
in their mt genomes. Our results would encourage further investigation on mt genome
fragmentation pattern in parasitic lice and other insects.
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