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A. Figure S.1

Figure S.1: Pooled within-species multivariate regression of ventral shape (regression score1) onto size
(centroid size). Shapes at the opposite extremes of the range of allometric variation are shown by using
wire-frame, indicates the predicted shape shift from small (left) to big size (±1.5 scale factor of the
centroid size).

B. Discussion on the mechanical aspects of prevalent lice shape
development under deep ocean conditions

The main [macro] difference, from the morphological point of view of deep immersed and coastal divers
(shallow-depths immersion) lice is their spatial shape distribution. As it was statistically described in
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this article (Figures 2 through 5 in main document), marine lice show an oblate-like predominant shape
(see Note below) with a high degree of isotropy in its lateral and longitudinal sizes (a = c = βb, being β a
real number and β > 1, see Fig. S.2, while coastal divers lice have predominant prolate-like distribution
with low bi-axial anisotropy (ventral/dorsal and lateral axes, a = γb = γc, with γ > 1). Average values
for their sagital sizes have been considered for the two predominant shapes. As we will discuss later, this
difference have a direct impact on the lice hydrostatics/mechanics performance during its life immersed
at high depths with its hosts while they spend time at deep sea depths.

[Note: The definition of the geometry of an ellipsoidal body is given to define the factors to be be
considered in mechanical and numerical model proposed in this paper. Spheroids bodies aligned with
the Cartesian coordinates are described geometrically by the general equation x2/a2 +y2/b2 +z2/c2 = 1,
where a, b, and c are the principal axes. For ellipsoidal bodies, the sphere-degenerate cases are (a) bodies
that have two equal axes, such as a = b, generally referred to as spheroid or ellipsoid of revolution, and
(b) variations results in different shapes of bodies, which can be expressed as a function of their aspect
ratios, defined as αr = c/a = c/b. αr < 1 for an oblate spheroid, αr = 1 for a sphere, and αr > 1 for a
prolate spheroid. The shapes of oblate and prolate spheroids are schematically shown in Fig. S.2.]

Figure S.2: Prolate and Oblate ellipsoids definitions.

Generally speaking, there are two possible paths or natural mechanisms for an organism like seal
louse to develop its prevalent rounded shape in adult stages: one is Developmental Growth and the other
is Selection Pressure.

Developmental Growth is an attractive tool, that uses an inter-disciplinary set of theories, such as
Biology, Physics and Mathematics, to describe how the mass [and the volume] of a body evolve in time,
while it interacts with the surrounding environment and life conditions. The grow, change and evolution
of a living organism and/or its internal/external vital organs can be described in terms of physical
fields arising in the context of the Continuum Mechanics theory1. The development of many organs
of different species have been successfully studied using this framework. While it may be tempting to
explain the displacement reported in this article using a well-established and proven theory, we believe
that developmental growth (specifically its volumetric version or framework) cannot account for this
feature, for two clear reasons: a) lice start diving into deep waters attached to their hosts when they
have reached their adult stages, where its final shape, mass and volume have already converged; and
b) the immersion and life with its host takes place after the louse has already molted its exoskeleton, a
change that means a profound alteration of its structure.

Although other fish and animals living at high hydrostatic pressure environments in deep-sea and
the Abyssopelagic Zone have not developed round shapes on their bodies (the departure morphology of
deep-diving sea lice is developed while its terrestrial early life), it is clear (and based on the facts above)
that deep-diving sea lice have been subject to Pressure Selection in such conditions when compared with
the shape characteristics of coastal (or shallow) divers allometry.

From the physical point of view, a rounded shape of an insect can help it to better adapt to high
hydrostatic pressure due to structural advantages. These advantages are (a detailed mechanical model
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supporting the observations is described in section 1.):

i) Increased surface area in the plane normal to its revolution axis: An increased area on its ven-
tral/dorsal plane (Fig. S.2) makes the external pressure to be better re-distributed along the entire
body volume reducing the internal energy spent to bear the undergoing body deformations, making
a louse with bigger wet area more suitable to withstand the external pressure. As an increase in
the external pressure is proportional to the surface area (and not the volume), an oblate shaped
individual will experience lower levels of stresses triaxility in the embedded organs, while the en-
ergy consumption due to pressure compression for both shapes are comparable. This feature can
be seen related to only hydrostatic pressure at high depths (see section D.).

ii) Oblate shape has also an important role from the hydrodynamics point of view; this is when the
sea elephant is swimming at moderately high velocity and the lice remain attached to it. This
aspect falls beyond the scope of this article and it will be studied further in a future article.

In the next sections we develope a mechanical explanation of a first order model, in terms of the body
shape complexity, using the Continuum Mechanics theory and a numerical model for the simulation of
the elephant immersion and the pressure acting on the lice bodies. We propose and derive three different
metrics that are standard in Continuum Mechanics to evaluate the performance of the simplified model.

1. Conformation performance

Lice that dive into water attached to their hosts will be subjected to equal compressive stress in all
directions, i.e. a hydrostatic state. Assuming that the body of the louse can undergo a certain level of
deformation, but without changing its original shape, the generalized Hooke’s law and first-order theory
can be used as a first estimate.

2. Problem formulation

As the stress state is hydrostatic and the constitutive response is isotropic, the resulting deformations
can only cause a change in volume (∆V ). Volumetric strain (e) measures the rate at which the volume
changes as the external pressure increases and is defined as follows:

e =
∆V

V
= λ1λ2λ3 (1)

where λi, i ∈ {1, 2, 3} is the i-principal stretch.
In this derivation we will assume that Ogden’s hyperelastic hypothesis represents the material con-

stitution accurately enough and the energy density function is defined by:

W (λ1, λ2, λ3) =
µ

α

[
λα1 + λα2 + λα3
(λ1λ2λ3)α/3

− 3

]
+
αµ(1 + ν)

3(1− 2ν)
[λ1λ2λ3 − 1− lnλ1λ2λ3] . (2)

The three parameter that define the material response is the Poisson ratio ν, the shear modulus µ
and the exponent α.

The Second Piola-Kirchhoff (Pi) is the energy conjugate of the Green strain tensor and can be
obtained from the energy density function:

Pi =
∂W

∂Ei
=

1

λi

∂W

∂λi
(3)

It is then possible to obtain each of the components of the tensor, resulting in the following:

P1(λ1, λ2, λ3) =
µ

3λ21

(
(λ1λ2λ3)−

α
3 (2λα1 − λα2 − λα3 )− α(ν + 1)(λ1λ2λ3 − 1)

2ν − 1

)
(4)

P2(λ1, λ2, λ3) = − µ

3λ22

(
(λα1 − 2λα2 + λα3 ) (λ1λ2λ3)−

α
3 +

α(ν + 1)(λ1λ2λ3 − 1)

2ν − 1

)
(5)

P3(λ1, λ2, λ3) = − µ

3λ23

(
(λα1 + λα2 − 2λα3 ) (λ1λ2λ3)−

α
3 +

α(ν + 1)(λ1λ2λ3 − 1)

2ν − 1

)
(6)
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The principal components of the Cauchy stress are given as:

Jσi = Pi (7)

where J = λ1λ2λ3 is the determinant of the stretch tensor. Thus, the principal components of the
Cauchy stress tensor can be written as:

σ1(λ1, λ2, λ3) =
µ

3λ31λ2λ3

(
(λ1λ2λ3)−

α
3 (2λα1 − λα2 − λα3 )− α(ν + 1)(λ1λ2λ3 − 1)

2ν − 1

)
(8)

σ2(λ1, λ2, λ3) = − µ

3λ1λ32λ3

(
(λα1 − 2λα2 + λα3 ) (λ1λ2λ3)−

α
3 +

α(ν + 1)(λ1λ2λ3 − 1)

2ν − 1

)
(9)

σ3(λ1, λ2, λ3) = − µ

3λ1λ2λ33

(
(λα1 + λα2 − 2λα3 ) (λ1λ2λ3)−

α
3 +

α(ν + 1)(λ1λ2λ3 − 1)

2ν − 1

)
(10)

Figure S.3: Stress state cube

In the state of hydrostatic stress, the only action is the water pressure (Fig. S.3), and therefore:

σ1 = σ2 = σ3 = −p (11)

λ1 = λ2 = λ3 = λ (12)

Therefore, the equations above reduce to:

p =
α
(
λ3 − 1

)
µ(ν + 1)

λ5(2ν − 1)
(13)

Isolating λ3, which is the volumetric deformation itself, we have:

λ3 = e =
c1

c1 − λp
(14)

where

c1 =
αµ(ν + 1)

2ν − 1
(15)

For the same level of pressure and stretch, both forms will have the same volumetric contraction and
also the same strain energy (u = σiλi). Note that u is equivalent to W but written in terms of stresses
and stretches.
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C. Morphology implication

Prolate-predominat shape (costal or shallow divers). In this ellipsoidal shape we have b = c =
a/2. The volume of this shape (Vp) is:

Vp =
4

3
πabc =

4

3
πa(a/2)(a/2) =

πa3

3
(16)

The energy stored is:

Up =

∫
V

udV = uVp =
3

2E
(1− 2ν)p2

πa3

3
=
π(1− 2ν)p2a3

2E
(17)

Oblate-predominat shape (deep divers). For this other ellipsoidal shape we have b = a/2, c = a.
The volume of this shape (Vo) is:

Vo =
4

3
πabc =

4

3
πa(a/2)(a) =

2πa3

3
(18)

Similarly, the accumulated energy is:

Uo =

∫
V

udV = uVo =
3

2E
(1− 2ν)p2

2πa3

3
=
π(1− 2ν)p2a3

E
(19)

These results show that:

Up =
1

2
Uo (20)

This equation means that assuming the two shapes have the same major axis size, the oblate will
have more energy absorbed and will therefore be able to conform more to the surface it is attached to.
Prolate would be much more stiff in this case, what is indicative of disadvantage, in particular for its
ability to accommodate micro-cracks (abrupt failure). The same mechanical principle is found in shock
protection devices.

D. Comparing stress distributions

In addition, the mechanical performance of the two forms can be inferred qualitatively and quantitatively
by means of a stress distribution analysis using Finite Elements Analysis (FEA) techniques. For this
purpose we have built a numerical model for two representative specimens of both lice families using the
software LS-DYNA©2,3. LS-DYNA solves the equations of motion of a body made of a tissue material
that mechanically obeys the law described by its consitutive equation (2), when it is hidrostatically
compressed with an increasing pressure field as it happens when the elephant seals dive from the ocean
surface toward deep waters. Basically, the numerical model consists of an ellipsoid with the statitiscal
dimension reported in this work, made of an Ogden (quasi-incompressible tissue) hyperelastic material
with homogenous mechanical properties and an external layer of a slightly harder (than the body)
material representing the louse dermis (see Fig. S.4).

The three material parameters defining the model are ν = 0.495 and α = 1 and (µbody, µdermis) =
(10, 15) MPa.

Fig. S.5 shows a comparison between the principal stress fields for the two forms. In both cases it is
noticed a steep gradient variation in the region close to the skin which quickly dissipates and becomes
homogeneous within the material domain. The same behaviour is observed for the internal pressure field
(Fig. S.6). Note the smooth transition of the gradient in the region near the outer surface indicating a
good-accuracy numerical solution, what often is challenging for nearly incompressible materials.

Additionally, the Lode parameter is a handful to distinguish between different three dimensional
stress states (from axisymmetric tension to in-plane shear). It is a function of the third invariant of stress
deviator and is shown in Fig. S.7 comparing both morphologies. The central regions show a high level
of triaxiality (modulus close to unity) while the points near to the surface show low triaxiality (Lode
parameter close to zero). High levels of triaxiality have been associated with shear-type mechanical
rupture. Note that at the same level of dive depth, the prolate shape has a larger area subject to
high values of the Lode parameter, which may indicate a physiological disadvantage depending on the
positioning of the internal organs and their ability to resist triaxial states of stress.
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Figure S.4: Numerical model and FEA mesh of the simplified lice shapes.

These results suggest that at greater depths the oblate shape is more advantageous from a mechanical
point of view.

Figure S.5: Comparison of the First Principal Stress field (cross section plane with normal (0; 1; 0).
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Figure S.6: Comparison of the pressure fields for the two forms (cross section plane with normal (0; 1; 0).

Figure S.7: Comparison between Lode Parameter for the two forms (end loading level).
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