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The rate of DNA mutation and divergence is highly variable across the tree of

life. However, the reasons underlying this variation are not well understood.

Comparing the rates of genetic changes between hosts and parasite lineages

that diverged at the same time is one way to begin to understand differences

in genetic mutation and substitution rates. Such studies have indicated that

the rate of genetic divergence in parasites is often faster than that of their

hosts when comparing single genes. However, the variation in this relative

rate of molecular evolution across different genes in the genome is unknown.

We compared the rate of DNA sequence divergence between humans, chim-

panzees and their ectoparasitic lice for 1534 protein-coding genes across

their genomes. The rate of DNA substitution in these orthologous genes was

on average 14 times faster for lice than for humans and chimpanzees.

In addition, these rates were positively correlated across genes. Because this

correlation only occurred for substitutions that changed the amino acid,

this pattern is probably produced by similar functional constraints across the

same genes in humans, chimpanzees and their ectoparasites.
1. Introduction
Understanding differences between species in the rate of molecular evolution is

of considerable interest in the fields of evolution, molecular biology, population

genetics and systematics. However, estimating this rate variation is often diffi-

cult because of uncertainties regarding the timing of diversification. Host and

parasites provide a system in which the relative rates of molecular evolution

can be directly estimated, provided some degree of congruence (codivergence)

between host and parasite evolutionary trees exists [1,2]. Several such relative

rate estimates have been made for a variety of host and parasite systems, and

parasites are usually observed to evolve more rapidly than their hosts at the

molecular level [2–9]. Some previous explanations for this phenomenon have

been shorter generation times, population bottlenecks or relaxed selection for

mutation repair in parasite lineages when compared with their hosts.

However, most of these studies compare only relative rates of genetic sub-

stitution for a single gene, typically mitochondrial genes because of the ease of

sequencing homologous loci in host and parasite taxa. There has been no study

of the variation in the relative rates of DNA substitution between hosts and

parasites across the genome. The codivergence event between humans, chim-

panzees and their lice (genus Pediculus) is well documented and provides an

excellent calibration point for comparing rates of genetic divergence [10–12].

The genomes of humans (Homo sapiens), common chimpanzees (Pan troglodytes)

and the human body louse (Pediculus humanus) have already been sequenced

[13–15]. We sequenced across the genome of the chimpanzee louse (Pediculus
schaeffi) using next-generation sequencing of a 500 bp paired-end library with

the Illumina HiSeq2000 platform in a single lane and achieved approximately
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120� coverage. Because these data were not collected for com-

plete genome assembly as a goal, for the chimpanzee louse, we

used reference-based assembly of individual nuclear encoded

genes that are orthologues between humans, chimpanzees

and the human body louse. These individual gene assemblies

were then used to compare the relative rate of divergence

across these genes between these ectoparasites and their hosts.
blishing.org
Proc.R.Soc.B

281:20132174
2. Material and methods
Lice were collected from chimpanzees (Pan troglodytes schweinfurthii)
from Ngamba Island Chimpanzee Sanctuary during annual health

checks. Total genomic DNA was extracted by grinding five adult

female specimens of the chimpanzee louse (P. schaeffi) in 300 ml

of saline EDTA with 5 ml of lysozyme, incubating at 378C for 1 h.

The 5 ml of proteinase K and 10 ml 25% SDS solution were added

and incubated at 558C for 1 h. After incubation, 1 : 1 volumes of

phenol : chloroform were added to the solution. The mix was centri-

fuged (10 min at 13 000g) and 200 ml of chloroform was added to the

aqueous layer and centrifuged (5 min at 13 000g). The supernatant

was combined with 1/10 volume of 3 M sodium-acetate and

0.7 volumes of isopropanol and placed in 2208C for 2 h. DNA

was pelleted by centrifuging for 15 min at 13 000g at 48C. Super-

natant was removed and DNA washed in cold 80% ethanol and

resuspended in nuclease-free water. Additional voucher specimens

are stored at the University of Florida.

A 500 bp shotgun library was constructed using this extract

and sequenced using pair-end reads on a single lane of an

Illumina HighSeq2000 Analyzer with 100 bp reads. Raw

sequences from the chimpanzee louse (P. schaeffi) are deposited

in GenBank Short Read Archive (accession SRX390495). We

searched OrthoDB (http://cegg.unige.ch/orthodb6, [16]) for

genes that are 1 : 1 : 1 single copy orthologues between humans

(Homo sapiens), common chimpanzee (Pan troglodytes) and

human body lice (P. humanus). This initial search recovered

3026 potential orthologues. We used CLC Genome Workbench

(CLCbio) to assemble the Illumina reads for the chimpanzee

louse against coding DNA sequences of the 3026 orthologues

from the human body louse (P. humanus) genome [15] in Vector-

Base (https://www.vectorbase.org). In addition to protein

sequences from OrthoDB, we also retrieved coding DNA

sequences for the 3026 putative orthologues for humans and

chimpanzees from the Ensembl database [17].

As a further check on orthology, we used a BLAST (NCBI Blast

2.2.27) search of the chimpanzee genes against the human protein

sequence database (from Ensembl). We also conducted a BLAST

search of the chimpanzee louse assemblies against the protein data-

base for human body louse (from VectorBase). Only those genes for

which the top BLAST hit corresponded to the putative orthologue

from OrthoDB were included in subsequent analyses (1724 genes).

Gene sequences from humans and chimpanzees and from human

body lice and chimpanzee lice were pairwise aligned in MUSCLE

[18]. In 164 genes, stop codons were detected in the Pan troglodytes
sequences and in 11 cases stop codons were detected in the

P. schaeffi sequences. These genes were removed from further ana-

lyses. A statistical test for outliers using Z-value scores was

performed on the per cent divergence values (see below), and

after Bonferroni correction 11 genes were determined to be outliers

for humans/chimpanzees and three genes for the lice. These out-

liers were removed leaving a final dataset of 1534 orthologous

genes (alignment deposited in Dryad doi:10.5061/dryad.9fk1s).

For each of the 1534 orthologous loci, we used custom

Perl scripts (deposited in GitHub, www.github.com/juliema/

publications) to calculate uncorrected per cent sequence divergence

between humans and chimpanzees and between the human body

louse and chimpanzee louse. These DNA sequences were also trans-

lated to protein sequences and the same comparisons were made.
These comparisons did not include any sites in which gaps were

introduced because of the alignment. In addition, Dn and Ds

values were calculated for all these comparisons using the codeml

program in the PAML package (v. 4.4b, [19]) and Nei & Gojobori’s

calculations of Dn and Ds [20]. To estimate the genome-wide relative

rate, all sites were pooled for each species across genes and the

average genome-wide sequence divergence was calculated by divid-

ing the total number of substitutions by the total number of sites.

All statistical analyses of these values were performed in the R

statistics package [21].

To estimate the relative rates of sequence divergence for mito-

chondrial genes, the mitochondrial genomes for humans,

chimpanzees and P. humanus were downloaded from GenBank.

Because of the extremely high divergences between P. humanus
and P. schaeffi, reference-based assemblies could not be used.

Rather, we used a combination of Target Restricted Assembly

[22] and BLAST searches of a de novo partial genome assembly

of P. schaeffi constructed using SOAPDENOVO [23] to obtain

sequences of mitochondrial protein-coding genes of P. schaeffi.
The sequences for two short genes (ATPase8 and ND4L) could

not be recovered using these methods. The sequences for the

11 genes that were recovered were aligned against sequences

for P. humanus and genetic distances and relative rates calculated

in the same way as for nuclear genes.
3. Results and discussion
For any relative rate comparison, it is important that ortholo-

gous genes are being compared, in this case between humans,

chimpanzees, human lice and chimpanzee lice. First, we used

the Ortholog Database (OrthDB, 16) to determine which

protein-coding genes were strict 1 : 1 : 1 orthologues between

humans, chimpanzees and the human body louse. Using refer-

ence-based assembly against the human body louse and

reciprocal best BLAST analyses, we compiled sequences for

these same 1534 orthologue genes in the chimpanzee louse

genome (Material and methods). Comparisons of the per cent

sequence divergence across these 1534 orthologues between

human lice (P. humanus) and chimpanzee lice (P. schaeffi) to

those for humans and chimpanzees revealed that lice are evol-

ving 14.8 times faster at the DNA sequence level than their hosts

(Wilcoxon signed-rank test, p , 0.0001). However, there was

considerable variation in DNA sequence divergence across

genes for both humans and chimpanzees (s.d. ¼ 0.003) and

for lice (s.d. ¼ 0.02) (figure 1).

Some of this variation could be explained by a correlation

between sequence divergences for a gene between lice and bet-

ween primates (figure 1). Regression of pairwise divergences

across the 1534 orthologous genes revealed a significantly posi-

tive correlation (slope ¼ 1.08, Student’s t¼ 7.38, p , 0.0001),

though this correlation accounted for only a small fraction of

the variation in divergence values across genes (r2 ¼ 0.034).

This correlation in rates of divergence across the genome

could potentially be explained by similar selective constraints

on the same gene in different taxa. Regression of protein

divergences between lice against those between humans

and chimpanzees were also significantly positive (slope ¼

1.98, Student’s t ¼ 12.56, p , 0.0001) and this correlation

explained a larger fraction of the variation (r2 ¼ 0.093)

than did comparisons of DNA substitutions. As with DNA

divergence, at the protein level lice were evolving 8.6 times

faster than primates. The average protein divergence between

the lice was much higher (4.8%) than between humans and

chimpanzees (0.6%).
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Figure 1. Plot of pairwise uncorrected sequence divergence across 1534 nuclear
protein-coding genes between human and chimpanzee lice against that
for the orthologous gene in humans and chimpanzees. The solid line indicates
least-squares regression line (slope ¼ 1.08, Student’s t ¼ 7.38, p , 0.0001),
whereas the dashed line indicates expectation if genes evolve at the same rate in
both groups. Points above the dashed line are genes that evolved faster in lice
and points below the line are genes that evolved faster in humans and
chimpanzees (none in this case).
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To evaluate whether functional constraints on amino acids

could fully explain the correlation across the genome in rates of

DNA substitution, we used estimates of Dn (non-synonymous

divergence) and Ds (synonymous divergence) calculated for

pairwise comparisons for all 1534 genes between the two

louse species as well as and between humans and chimpan-

zees. Regression of Dn for lice against Dn for humans and

chimpanzees (figure 2a) revealed a significantly positive

correlation (slope ¼ 1.86, Student’s t ¼ 11.20, p , 0.0001).

By contrast, regression of Ds for lice against Ds for humans

and chimpanzees (figure 2b) showed no correlation (Student’s

t ¼ 0.82, p ¼ 0.41), even though synonymous substitutions

accumulate 25.13 times faster in lice than their hosts.

The Dn/Ds ratio is often used as an estimate of the relative

level of functional constraint on protein evolution and has

also been used to detect positive selection. Dn/Ds ratios

much less than 1 usually indicate purifying selection against

amino acid changes, whereas Dn/Ds ratios greater than 1 are

often taken as evidence for adaptive or positive selection [24].

Interestingly, none of the Dn/Ds ratios for these genes in lice

were greater than 1, while Dn/Ds ratios for 24 genes were

greater than 1 for humans and chimpanzees. In fact, the

Dn/Ds ratios for primates (mean ¼ 0.11) were significantly

higher than those for lice (mean ¼ 0.08) for the same genes

(Wilcoxon signed-rank test p , 0.00001). The correlation

between Dn values across genes between lice and primates is

also reflected in the positive correlation between the Dn/Ds

ratios (slope ¼ 0.058, t-value ¼ 8.65, p , 1 � 10– 15).

Across 1534 genes that could be confidently assigned as

orthologues between humans, chimpanzees and their parasitic

lice, these genes evolve just over 14 times faster in lice when com-

pared with in their hosts. Interestingly, the genetic divergence

between lice was correlated with the genetic divergence in

these same genes between humans and chimpanzees. That is,

genes that evolve more rapidly in humans and chimpanzees

also evolve more rapidly in their parasitic lice, even though lice
and primates are separated by more than 600 million years of

evolution [25]. This is, to our knowledge, the first evidence

of correlated rates of evolution across the genome between

hosts and their parasites. The explanation for this correlation

appears to be the relative level of functional constraint on differ-

ent genes. Comparisons of the rate of silent substitutions did not

reveal any correlation, while comparisons of the rate of substi-

tutions that changed the amino acid (replacement substitutions)

were correlated.

This study also provides an estimate of the relative rate

of substitution between hosts and parasites across their gen-

omes. Previous comparisons have generally involved single

genes, typically from the mitochondrion. These estimates of

mitochondrial relative rates of substitution between humans,

chimpanzees and their lice indicated that lice evolve 2.3 times

faster based on only the cytochrome oxidase I and cytochrome

b gene regions [10]. However, this prior comparison used

slightly different methods and did not estimate rates of substi-

tution across the entire mitochondrial genome. Applying the

same methods used in this study to mitochondrial protein-

coding genes (see Material and methods), we estimated that

mitochondrial genes in lice evolve 2.9 faster than in humans

and chimpanzees, generally in line with these prior estimates.

However, there was no correlation across these mitochondrial

genes in the degree of genetic divergence (Student’s t ¼ 0.52,

p ¼ 0.62) as there was for nuclear genes.

The fact that both nuclear and mitochondrial genes in para-

sitic lice evolve more rapidly than those of their hosts suggest a

more universal explanation for the rate increase is needed, rather

than explanations specific only to the mitochondrion. Mitochon-

drial genomes of lice are highly rearranged compared with

other insects [25–29], and these rearrangements were hypoth-

esized to be correlated with increased substitution rates. In

fact, in the human body louse (P. humanus), the mitochondrion

is divided into a number of minicircular chromosomes [15,30].

The lack of mitochondrial single-stranded binding protein

(mtSSB) in lice was postulated to account for this correlation

[29]. However, the lack of mtSSB cannot explain the rate increase

for nuclear protein-coding genes. In fact, the relative rate of sub-

stitution for nuclear genes is even much higher (14.8�) than it is

for mitochondrial genes (2.9�), further suggesting that factors

not specific to the mitochondrion are involved.

Another hypothesis that has been used to explain the

higher substitution rate in lice, compared with their ver-

tebrate hosts, is an elevated rate of slightly deleterious

substitutions because of repeated population bottlenecks in

lice upon transmission between hosts and inbreeding on indi-

vidual hosts [4]. However, the fact that the Dn/Ds ratio is

significantly higher for primates when compared with lice

is evidence against this hypothesis, which predicts eleva-

ted non-synonymous substitutions (assumed to be slightly

deleterious) in lineages with stronger bottlenecks.

In addition, the elevated substitution rate in lice occurs

for both synonymous and non-synonymous substitutions

(figure 2), which suggests that underlying differences in

mutation rates must be accounted for in the explanation. Some

possible explanations include genome-wide relaxed selection

for mutation repair [29], shorter generation times [3] or overall

elevated mutation rates [4]. In fact, an increased mutation rate

combined with purifying selection could potentially explain

the reduced Dn/Ds ratio in lice when compared with pri-

mates. Under this hypothesis, synonymous mutations would

accumulate in proportion to the mutation rate [31], whereas

http://rspb.royalsocietypublishing.org/
http://rspb.royalsocietypublishing.org/
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non-synonymous mutations would be eliminated by purifying

selection, which would lower the Dn/Ds ratio in the case of elev-

ated mutation rates. Functional constraints on protein structure

appear to play some role in determining the substitution rates

for different genes; however, it explains very little (less than

3%) of the overall variation in substitution rates across genes

for lice compared with humans and chimpanzees.
Research permit approvals were from Uganda Wildlife Authority
(permit NS71) and Uganda Council of Science and Technology
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